"Using primitive brains to achieve emergent smart solutions"
"Using primitive brains to achieve emergent smart solutions"
No Thumbnail Available
Date
2019-10
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Cham
Abstract
Either for or against the validity of Kurzweil's law, it is a fact
that technology accelerates at an astonishing pace achieving breathtaking
results in any kind of human activity. The Internet of Things, the Cloud,
Fog and Edge computing, the daily increasing visions for smarter systems
following the advancements in machine learning, and many more
technological innovations lead to more demanding requirements than in
previous decades for emergent applications of extreme complexity. A
promising solution to deal with such complexity is to employ systems that
exhibit self properties, composed by simple agents that communicate and
interact following simple protocols achieving desirable emergent
properties that allow smart solutions in dynamic environments of extreme
complexity.
Nature through millions of years of evolution has many systems like that
to exhibit. Studying systems of agents with primitive brains that demonstrate remarkable self properties that emerge and are not explicitly
engineered could prove of great value regardless of the required effort.
Imitating similar behaviors in artificial systems could offer smart solutions
to problems exhibiting high-level complexity that seemed unsolvable, or
are solved under very restricting and concrete conditions.
This presentation will present and discuss experiences studying ants, largebodied animals, bees, hornets, focusing on the latest study of frogs and
how their mating strategies could potentially lead to smart solutions in
acoustic scene analysis field, disaster management, and many other
complex dynamic systems.