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Abstract. By embracing cloud computing enterprises are able to boost their
agility and productivity whilst realising significant cost savings. However, due
to security and privacy concerns, many enterprises are reluctant to migrate their
data and operations to the cloud. One way to alleviate these concerns is to devise
access control policies that infuse suitable security controls into cloud services.
Nevertheless, the complexity inherent in such policies, stemming from the
dynamic nature of cloud environments, calls for a framework that provides
assurances with respect to the effectiveness of the policies. In this respect, this
work proposes a class of constraints, the so-called well-formedness constraints,
that provide such assurances by empowering stakeholders to harness the at-
tributes of the policies. Both the policies and the constraints are expressed
ontologically hence enabling automated reasoning about the abidance of the
policies with the constraints.
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1 Introduction

Cloud computing enables enterprises to realise significant cost savings, whilst boosting
their agility and productivity. Nevertheless, due to security and privacy concerns, many
enterprises are reluctant to relinquish control of—oftentimes critical—corporate assets
by migrating their data and applications to third-party cloud providers [1]. One way to
alleviate these concerns, hence bolster the adoption of cloud computing, is to infuse
adequate access control policies into the applications through which critical assets are
accessed in the cloud [2]. Nevertheless, the inherently dynamic nature of cloud envi-
ronments calls for policies that are able to incorporate a potentially complex body of
contextual knowledge pertaining to access requests [3]. As an example, consider a
policy whereby a particular entity (s) is allowed to read a sensitive data object (o) only
when: (i) o resides in a data centre in the EU; (ii) s resides in a specific geographical
area (say the city of Athens), or the request originates from a particular subnet; (iii) the
request is received during a prescribed time interval.

© IFIP International Federation for Information Processing 2017
Published by Springer International Publishing AG 2017. All Rights Reserved
F. De Paoli et al. (Eds.): ESOCC 2017, LNCS 10465, pp. 75–82, 2017.
DOI: 10.1007/978-3-319-67262-5_6



We argue that, for stakeholders to entrust such complex access control policies with
the protection of their sensitive assets, a framework that provides assurances about the
effectiveness of the policies is required [2]. In particular, a framework is required that
assists developers in infusing effective access control policies into the applications
through which sensitive assets are accessed in the cloud. Our work, conducted as part
of the PaaSword project [4], provides such a framework. More specifically, it offers a
generic security-by-design solution—essentially a PaaS offering—that provides
assurances about the effectiveness of context-aware access control policies by facili-
tating their governance. To this end, it draws upon a semantic representation of
policies, one that ontologically captures the various knowledge artefacts that are
encoded in the policies. Such a representation disentangles the expression of policies
from the actual code of the applications into which they are infused hence enabling
automated reasoning about their correctness.

This paper proposes an approach to such reasoning. In particular, it proposes a set
of ontologically-expressed constraints, the so-called well-formedness constraints, that
articulate all those knowledge artefacts that must, may or must not be embodied in an
access control policy. These constraints give rise to a higher-level ontology, one that
specifies an allowable form, or structure, by which access control policies must abide.
Evidently, well-formedness constraints empower stakeholders to harness the knowl-
edge artefacts embodied in access control policies that protect their sensitive assets. In
other words, they empower stakeholders to infuse into these policies their business
logic and overall stance towards security. In this respect, well-formedness constraints
assist developers in devising policies that are appropriate for the stakeholders’ needs,
hence for the assets that they protect.

The rest of this paper is structured as follows. Section 2 presents an ontological
representation for access control policies and well-formedness constrains. Section 3
outlines a mechanism that reasons about the satisfaction of well-formedness con-
straints. Section 4 discusses related work and Sect. 5 outlines conclusions.

2 Constraining Access Control Policies

As already discussed, the dynamic nature of cloud environments calls for access
control policies that are able to incorporate the contextual knowledge pertaining to
access requests. Attribute-based Access Control (ABAC) policies [5], due to their
inherent generality stemming from their inherent reliance on the generic concept of an
attribute, are particularly suitable for capturing such knowledge [3] and are thus
adopted in our work. This section outlines an OWL-based representation for ABAC
policies and well-formedness constraints; as already mentioned, the latter harness the
attributes embodied in the former.

2.1 A Model for ABAC Rules and Policies

Following the XACML standard [6], an ABAC policy comprises one or more ABAC
rules. Upon receipt of an access request, a rule-combining algorithm [6] is executed in
order to select which one of these rules, if any, will be applied in order to arrive at a
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‘permit’ or a ‘deny’ decision. It follows that, for each access request, an ABAC policy
resolves to at most one of its constituent rules (a policy that does not resolve to any of
its constituent rules is considered ‘Not Applicable’ or ‘Indeterminate’ [6]).

An ABAC rule comprises an antecedent and a consequent. The latter specifies the
rule’s decision, which according to the XACML standard, invariably resolves to either
a ‘permit’ or a ‘deny’. The former articulates a (pre-)condition (or ‘target’ in the
XACML jargon) that must be satisfied in order for the rule to be enforceable. More
specifically, it incorporates a set of relevant knowledge artefacts, its attributes, whose
values need to be taken into account when deciding whether to permit, or deny, a
request. These attributes are drawn from an underlying Context Model (CM)—an
extensible ontological framework that includes interrelated concepts suitable for cap-
turing attributes and the properties thereof. A simplified view of the CM that is used in
this work, one which includes only concepts and properties considered in this paper, is
depicted in Fig. 1 (for more details on the CM, the interested reader is referred to [7]).

Ontologically, ABAC policies are represented as instances of the concept
ABACPolicy, and ABAC rules as instances of the concept ABACRule; ABAC policies
are associated with their constituent rules through the object property hasABACRule.
The antecedent and consequent of an ABAC rule are represented, respectively, as
instances of the concepts ABACAnt and ABACCons; an ABAC rule is associated with
its antecedent and consequent via the properties hasABACAnt and hasABACCons
respectively. In addition, the following restrictions apply. Firstly, an ABAC policy is
invariably associated with at least one ABAC rule; secondly, an ABAC rule is
invariably associated with exactly one antecedent and exactly one consequent; thirdly,

Fig. 1. HLO constraints
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the consequent of an ABAC rule always resolves to either a ‘permit’ or a ‘deny’
decision (represented respectively by the individuals permit and deny). All three
restrictions are ontologically captured in terms of terminological (TBox) axioms
expressed in the SROJQ Description Logic (DL) [8]. These axioms are presented in
Table 1. The first demands that each ABAC policy, i.e. each instance of the concept
ABACPolicy, is also an instance of the (abstract) class that comprises all those indi-
viduals that have at least one association through the property hasABACRule with an
individual from the concept ABACRule. The second demands that each ABAC rule, i.e.
each instance of ABACRule, is also an instance of the class that comprises all those
individuals that have exactly one association through each of the properties
hasABACAnt and hasABACCons with individuals from the concepts ABACAnt and
ABACCons respectively. Finally, the third axiom demands that the class ABACCons
comprises solely the individuals permit and deny.

2.2 Well-Formedness Constraints

Well-formedness constraints specify the attributes of an ABAC rule, i.e. all those
knowledge artefacts from the underlying CM that must, may or must not be embodied
in the antecedent of an ABAC rule. In this respect, well-formedness constraints give
rise to a higher-level ontology (HLO) that defines an allowable form, or structure, for
the antecedent of an ABAC rule (see Fig. 1). The HLO not only articulates the per-
missible knowledge artefacts embodied in the antecedent, but goes a step further to
determine the allowable cardinalities with which these artefacts may appear, as well as
the allowable values that they may assume.

We now briefly elaborate on the HLO constraints that have been devised for ABAC
rules in the frame of the PaaSword project. These constraints are ontologically
expressed in terms of SROJQ TBox axioms which restrict the class ABACAnt. It is to
be noted here that these constraints are malleable in the sense that they can be altered to
express alternate structures for the antecedent of ABAC rules—i.e. structures that
potentially reflect more accurately the application-specific needs of an organisation
adopting the PaaSword framework. This malleability is of utmost significance for it
empowers stakeholders to infuse into access control policies their business logic and
overall stance towards security.

The first constraint states that each ABAC rule must embody exactly one protected
asset. Ontologically, this is captured through a TBox axiom that demands that the

Table 1. ABAC policy model restriction axioms

Axiom 1 ABACPolicyY � 1hasABACRule:ABACRule
Axiom 2 ABACRuleY �Ri:Cið Þ u � 1Ri:Cið Þ

where i ¼ 1; 2 and Ri � hasABACAnt;Ci � ABACAnt; for i ¼ 1

Ri � hasABACCons;Ci � ABACCons; otherwise

Axiom 3 ABACConsequent � fpermit; denyg
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antecedent of an ABAC rule, i.e. each instance of the concept ABACAnt, is associated
with exactly one individual from the class Object of the CM, and that this association
should be realised through the object property hasObj. Table 2 provides a formal
expression of this axiom, as well as of the rest of the axioms outlined in this section.
Similarly, the second axiom states that each ABAC rule must be associated, through
the property hasAct, with exactly one action from the class Action (i.e. with exactly one
action to be performed on the protected asset); the third axiom states that each ABAC
rule must be associated with at least one subject from the class Subject (i.e. with at least
one entity requesting access to the protected asset), and the fourth axiom demands that
each ABAC rule may refer, via the property hasCE to at most one context expression—
i.e. to at most one expression that constrains the values of the contextual attributes that
pertain to an access request. Context expressions take the form of instances of the class
ContextExpr (see Fig. 1) and are further discussed below.

A context expression (CE) is a propositional logic expression that is attached to the
antecedent of an ABAC rule and articulates the contextual conditions that must hold in
order to permit, or deny, a request. These contextual conditions may refer to the subject
and/or object of a request, or to the request itself. In other words, a CE captures the
body of contextual knowledge that must be taken into account when deciding upon a
request. Ontologically, a CE is represented as an instance of the class ContextExpr (see
Fig. 1). The various attributes that it binds, i.e. its parameters, are represented as
instances of the CM—in particular, as instances of the classes encompassed by the
ContextAttributes concept. These parameters are associated with their encompassing
CE through the object property hasParam and may be combined through the usual
propositional logic connectives. A CE invariably enjoys at least one association with a
parameter; ontologically, this is captured by an axiom analogous to Axiom 3 of
Table 2. Moreover, a CE may be defined recursively, in terms of one or more other
CEs; this is captured by including the class ContextExpr in both the domain and the
range of the property hasParam. Finally, a context expression is attached to the entity
that it refers to through the object property refersTo.

The HLO may encompass constraints that restrict the allowable forms that a CE can
assume when attached to a particular ABAC rule. These constraints restrict the car-
dinalities with which certain knowledge artefacts from the class ContextAttributes may
appear in a CE, as well as the allowable ranges of values that these artefacts may
assume. As an example, consider an HLO constraint that demands that any CE attached
to an ABAC rule should invariably incorporate at least one parameter that confines the
whereabouts of the subject s of a request to the physical location identified as Athens, or

Table 2. HLO axioms

Axiom 1 ABACAntY ð� 1hasObj:ObjectÞ u ð� 1hasObj:ObjectÞ
Axiom 2 ABACAntY ð� 1hasAct:ActionÞ u ð� 1hasAct:ActionÞ
Axiom 3 ABACAntY � 1hasSubj:Subject
Axiom 4 ABACAntY � 1hasCE:ContextExpr
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to the network location identified by the subnet 123:0:0:0=8. Ontologically, this con-
straint takes the form:

ContextExpressionYð� 1refersTo:fsgÞ u ðð� 1hasParam:fAthensgÞ
t ð� 1hasParam:f123:0:0:0=8gÞÞ ð1Þ

3 Reasoning About the Correctness of ABAC Policies

Reasoning about the correctness of an ABAC rule, hence about the correctness of an
ABAC policy that resolves to that rule, involves reasoning about the abidance of the rule
by the HLO constraints. Below, we outline how this reasoning is performed by a
mechanism that we have developed as part of the PaaSword project. As an example,
suppose the following set of SROJQ axioms that articulate the attribute values asso-
ciated with an ABAC rule; we shall term such an axiom-set a knowledge base (KB) [9].

R �fABACRule rð Þ;ABACAnt að Þ;ObjectðoÞ; SubjectðsÞ;
ContextExpr eð Þ;PhyLocationðAthensÞ; hasABACAntðr; aÞ;
hasABACCons r; permitð Þ; hasObj a; oð Þ; hasSubj a; sð Þ;
hasCE a; eð Þ; hasParam e;Athensð Þ; refersToðe; sÞg

ð2Þ

According toR, the antecedent a of the ABAC rule r is associated with the object o,
the subject s and the context expression e; e is further associated with the (physical)
location parameter Athens which refers to s.

Two seminal assumptions underpinning OWL are the Open-World Assumption
(OWA) and the non-Unique Name Assumption (non-UNA). Nevertheless, these
assumptions render the use of OWL cumbersome when reasoning about constraint
satisfaction. Consider, for example, the KB R above. R fails to specify the action that
is to be performed upon the object o. However, according to the OWA, this does not
mean that the rule r described by R does not have such an action associated with its
antecedent: it merely means that this association is not specified in R. In order to
overcome this obstacle, we adopt the approach proposed in [9] and dispense with the
OWA and the non-UNA, effectively enabling closed-world reasoning when checking
the abidance of ABAC rules by HLO constraints. This reasoning is based on an
extended semantics of OWL, namely the Integrity Constraint semantics [9]; an outline
of how such reasoning is performed is in order.

Each HLO axiom is translated into a query, one that is posed to the KB under
validation with the aim of discovering any individuals that violate the axiom: if the
query returns an empty set of individuals, the axiom is considered to hold; otherwise, it
is considered to be violated. The query is, in fact, an assertion axiom that uses variables
in place of individuals and expresses the negation of the HLO axiom that it translates.
As an example, consider Axiom 2 of Table 2. This axiom is translated into a query that
attempts to discover in R any individuals that belong to the class ABACAnt and which
either enjoy no associations (through the property hasAct) with instances of the class

80 S. Veloudis et al.



Action, or enjoy two or more such associations with distinct instances of Action.
Formally:

ABACAnt ðxÞ ^ ðnotðhasActðx; yÞ ^ ActionðyÞÞ_
ðhasActðx; yÞ ^ hasActðx; zÞ ^ ActionðyÞ ^ ActionðzÞ ^ notðy ¼ zÞÞ ð3Þ

These queries are termed in [9] Distinguished Conjunctive Queries with Negation
as Failure (DCQnot). DCQnot are posed to the KB under validation as SPARQL queries
[10]. SPARQL queries are executed in the Pellet reasoner [11] (however, any other
OWL reasoner could have been used instead). In [9], a set of translation rules for
turning a SROJQ axiom into a DCQnot, hence into a SPARQL query, is presented.

4 Related Work

A number of approaches have been proposed for the semantic representation of policies
[12–14]. These generally rely on OWL [15] for capturing the various knowledge
artefacts that underpin the definition of a policy. In [12] KaoS is presented—a generic
framework offering: (i) a human interface layer for the expression of policies; (ii) a
policy management layer that is capable of resolving conflicting policies; (iii) a
monitoring and enforcement layer that encodes policies in a programmatic format
suitable for enforcing them. KaoS lacks any mechanism for automatically checking the
correctness, hence the effectiveness, of policies.

In [13] Rei is proposed: a framework for specifying, analyzing and reasoning about
policies. Similar to our work, a policy comprises a list of rules that take the form of
OWL properties; it also comprises a context that defines the underlying policy domain.
Rei resorts to the use of constructs adopted from rule-based programming languages for
the definition of policy rules. This essentially prevents Rei from exploiting the full
inferencing potential of OWL as policy rules are expressed in a formalism that is alien
to OWL. In addition, it does not provide any mechanism for reasoning about the
effectiveness of policies.

In [14] the authors propose POLICYTAB for facilitating trust negotiation in
Semantic Web environments. POLICYTAB adopts ontologies for the representation of
policies that guide a trust negotiation process ultimately aiming at granting, or denying,
access to sensitive Web resources. These policies essentially specify the credentials that
an entity must possess in order to carry out an action on a sensitive resource that is
under the ownership of another entity. Nevertheless, no attempt is made to semantically
model the context associated with access requests, rendering POLICYTAB inadequate
for the dynamic nature of cloud environments.

5 Conclusions

We have presented an approach to reasoning about the correctness, hence the effec-
tiveness, of access control policies in dynamic cloud environments. The correctness is
judged on the basis of ontologically-expressed constraints, the so-called HLO
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constraints. The reasoning is based on an extended semantics of OWL, one that dis-
penses with the OWA and the non-UNA, allowing the transformation of the constraints
into queries that are posed to the KBs that represent the rules under validation.
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