
IEEE TRANSACTIONS ON CLOUD COMPUTING 1

Context-aware Policy Enforcement for PaaS-
enabled Access Control

Yiannis Verginadis, Ioannis Patiniotakis, Panagiotis Gouvas, Spyros Mantzouratos, Simeon

Veloudis, Sebastian Thomas Schork, Ludwig Seitz, Iraklis Paraskakis, and Gregoris Mentzas

Abstract— It is generally conceded that, due to security and privacy concerns, enterprises and users are reluctant to embrace

the cloud computing paradigm and hence benefit from the cost reductions and the increased flexibility or business agility that this

paradigm brings about. These concerns stem mainly from the significantly-expanded attack surfaces that result from the

heterogeneous nature of cloud services and the dynamicity inherent in cloud environments. In order to alleviate these concerns,

effective and flexible access control approaches are required to consider the contextual parameters that characterise data access

requests in the cloud. In this respect, this work presents PaaSword: a novel holistic access control framework—essentially a PaaS

offering—that extends the popular XACML standard with semantic reasoning capabilities that support the federation of effective

context-aware access control policies and their infusion into cloud applications with minimal manual intervention and effort. To

determine the performance of our solution, a comparative evaluation test is presented and discussed, against a well-known

reference implementation of the XACML standard, namely the open source WSO2 Balana engine.

Index Terms— access control, cloud computing, context-aware policy enforcement

—————————— ◆ ——————————

1 INTRODUCTION

y enabling ubiquitous access to shared pools of distrib-
uted and configurable resources, cloud computing rep-

resents a significant shift from the traditional client/server
paradigm towards service-based architectures that offer
theoretically boundless scalability and a flexible pay-per-
use model [1]. Evidently, such a shift brings about signifi-
cant advantages for users and enterprises in terms of cost,
flexibility and business agility. In particular, it greatly fa-
cilitates small and medium enterprises (SMEs) in dealing
efficiently and effectively with the data storage and pro-
cessing challenges that they may be facing.

Nevertheless, despite the compelling benefits, the majority
of enterprises are still to cross Moore’s chasm [2] with respect
to cloud adoption. More specifically, less than 20% of enter-
prise applications run in the cloud, with 29% of the enter-
prises reporting security concerns such as data breaches, in-
sufficient access management, insecure APIs and account hi-
jacking [3] as significant averting factors for migrating their
data and operations to the cloud [4]. Furthermore, these con-
cerns are fuelled by a series of recent security attacks that
gained increased publicity, such as the iCloud hack that
leaked hundreds of personal photos of celebrities [5], or the
ADP breach that exposed payroll and tax data of nearly
640,000 companies in the US [6]. Moreover, governmental leg-
islations regarding data privacy and data location, such as the

EU’s General Data Protection Regulation [7], present an addi-
tional source of concern for enterprises which are now faced
with severe legal and financial consequences if data confiden-
tiality is breached, or if cloud providers move regulated data
across national borders [8].

Clearly, these concerns must be alleviated if enterprises
and users are to embrace the cloud paradigm and benefit
from the manifold advantages that it brings about. This can
only be achieved if appropriate security policies are infused
into cloud applications in order to restrict access to sensitive
data [9]. Nevertheless, in an inherently dynamic cloud world
where data persist over distributed and ubiquitously accessi-
ble computing resources, these policies, if they are to be effec-
tive, must be able to take into account the varying contextual
circumstances surrounding data access requests and affecting
their permissibility. This calls for context-aware access control
policies, i.e. policies capable of tying the permission, or denial,
of an access request to a plethora of heterogeneous attributes
that synthesise the situation, or context, of one or more entities
deemed relevant to the request—e.g. the subject or object of
the request, or even the request itself [10], [11].

The burden of defining and implementing such sophisti-
cated access control policies typically falls on application de-
velopers, raising concerns about the degree to which these
policies sufficiently and adequately address the entire gamut
of contextual attributes that need to be considered for protect-
ing the sensitive data. In this regard, we argue that a promis-
ing approach to alleviating the security concerns associated
with the adoption of cloud computing is to offload part of this
burden from the application developers. To this end, this
work proposes PaaSword: an innovative security-by-design
framework, essentially a PaaS offering, for facilitating devel-
opers in infusing appropriate context-aware access control
policies into cloud applications. More specifically, PaaSword
constitutes a holistic framework based on the popular

————————————————

• Y. Verginadis, I. Patiniotakis and G. Mentzas are with the Institute of
Communications and Computer Systems, National Technical University of
Athens, Athens, Greece. E-mails: {jverg, ipatini, gmentzas}@mail.ntua.gr.

• P. Gouvas and S. Mantzouratos are with the Ubitech Ltd., Athens, Greece.
E-mails: {pgouvas, smantzouratos}@ubitech.eu.

• S. Veloudis and I. Paraskakis are with the South East European Research
Centre, The University of Sheffield, International Faculty CITY College,
Thessaloniki, Greece. E-mails: {sveloudis, iparaskakis}@seerc.org.

• S. T. Schork is with CAS Software AG, Karlsruhe, Germany. Email: sebas-
tian.schork@cas.de.

• L. Seitz is with the RISE SICS, Stockholm, Sweden. Email:
luwig.seitz@ri.se

B

2 IEEE TRANSACTIONS ON ON CLOUD COMPUTING

XACML standard [12] that provides: i) the necessary toolset
for facilitating developers in defining context-aware access
control policies that are specifically tailored to the particular
needs of their cloud applications; these policies take the form
of code-level Data Access Object (DAO) annotations; and ii) a
middleware for interpreting, monitoring and enforcing these
annotations dynamically, during application runtime, as well
as for governing them.

One of the main strengths of the PaaSword framework is
that it is underpinned by a generic representation of policies,
one that uses an ontological template for capturing the vari-
ous concepts, and their interrelations, that are involved in the
definition of a policy; this template is malleable in the sense
that it can be suitably extended with concepts and relations
that reflect the particular needs of the underlying domain of
application. In this respect, PaaSword promotes a clear sepa-
ration of concerns by unravelling the representation of poli-
cies from the actual code employed for enforcing them, whilst
accurately capturing the knowledge that lurks behind poli-
cies. This brings about the following seminal advantage. It en-
ables—by virtue of semantic inferencing—the generation of
new knowledge on the basis of the knowledge already en-
coded in the policies. Therefore, it can successfully tackle sit-
uations in which the contextual information piggybacked on
an access request does not necessarily match, at the syntactic
level, the corresponding information encoded in the policies.
For example, if a policy states that a sensitive data object (say
o) is only readable by requests that originate from within the
EU, then a request that originates from a location in, say, Bel-
gium will be permitted to read o, as semantic inferencing al-
lows the generation of the (new) knowledge that the request
indeed originates from within the EU. In this regard, the
PaaSword framework allows for the definition of interopera-
ble policies i.e. polices enforceable across the diverse admin-
istrative domains that a cloud environment may span. More-
over, through the incorporation of a suitable production sys-
tem, PaaSword is able to monitor and enforce the correspond-
ing policies, hence perform the aforementioned semantic in-
ferencing, with an acceptable performance penalty.

In addition, the generic policy representation underpin-
ning the PaaSword framework offers one more important ad-
vantage. It lends itself to a series of automated checks regard-
ing: (i) the well-formedness of policies, i.e. whether policies
include all the (contextual) information required for granting,
or denying, access to sensitive data; (ii) the disclosure of any
inter-policy relations such as subsumption and contradiction.
In this respect, this representation paves the way for the con-
struction of a generic mechanism for policy governance, one
that enables the organisations adopting the PaaSword frame-
work to create and manage their security policies according
to predefined rules and regulations. This is of utmost im-
portance for it increases our assurance on the effectiveness of
the policies. The implementation details of such a governance
mechanism are, however, beyond the scope of this paper.

The rest of this paper is structured as follows. Section 2 pre-
sents an overview of the PaaSword framework and outlines
the generic policy representation that underpins it. Section 3
presents the policy enforcement middleware that implements
PaaSword’s context-aware access control scheme. Section 4

presents the annotation interpretation mechanism and Sec-
tion 5 discusses the main aspects of the policy enforcement
business logic. Section 6 provides a comparative evaluation of
the PaaSword framework against a widely-adopted imple-
mentation of the XACML standard. Finally, Section 7 briefly
discusses related work and Section 8 concludes the paper and
outlines future work.

2 THE PAASWORD FRAMEWORK

This section presents an overview of the PaaSword frame-

work (Section 2.1) and outlines the ontological template

upon which it is founded (Section 2.2). In particular, with

respect to the ontological template, an outline of the Con-

text-aware Security Model that articulates the various con-

cepts underpinning the template is provided.

2.1 A Security-by-Design Framework

The PaaSword framework addresses the semi-honest ad-
versarial model discussed in [13] whereby a malicious
cloud provider is assumed to correctly follow the specifi-
cation of an underlying protocol whilst, at the same time,
is able to intercept messages in order to disclose sensitive
data [14], [15]. The framework offers, as a service, the fol-
lowing security-related features:

i. Transparent key usage for efficient authentication
of the subject of an incoming access request.

ii. Annotation capabilities at the level of DAOs in the
form of an IDE plugin that guide developers into
the process of articulating all those access control
policies that are required for protecting their sen-
sitive data in the cloud.

iii. Dynamic interpretation of the DAO annotations
into policy enforcement rules.

iv. Governance and quality control of the annotations
and the respective policies that they implement.

v. Formulation and implementation of the overall
policy enforcement business logic.

This work focuses on aspects ii., iii. and v. above which are
inextricably linked to the implementation of PaaSword’s ac-
cess control scheme. As discussed in Section 1, this scheme
must enable the expression of context-aware access control poli-
cies and it is hence based on the Attribute-based Access Con-
trol (ABAC) model—a model capable of taking into account
all those attributes that synthesise the context of one or more
entities that are deemed relevant to an access request [16].
Nevertheless, this model presents a crucial limitation: it lacks
the means of addressing any form of interrelation between the
considered attributes (e.g. whether the possession of one at-
tribute by an entity also implies the possession of another). It
therefore precludes any kind of semantic inferencing during the
evaluation of an access request on the basis of the information
encoded in these attributes. This means that the contextual in-
formation piggybacked on an access request must necessarily
match, at the syntactic level, the corresponding information
encoded in the policies. Naturally, this creates the burden of
having to define fine-grained access control policies that
cover the potentially different contexts that may be attached
to the entities that are related to a request. For example, a pol-
icy stating that a sensitive data object (say o) is only readable

VERGINADIS ET AL.: CONTEXT-AWARE POLICY ENFORCEMENT FOR PAAS-ENABLED ACCESS CONTROL 3

by requests that originate from within the EU is insufficient,
by itself, for deciding whether a request originating from a lo-
cation in, say, Belgium should be permitted or denied: a sec-
ond, finer-grained policy that states that requests originating
from a location in Belgium are permitted to read o, is re-
quired. Moreover, the interpretation of contextual attributes
at a purely syntactic level impedes the federation of access
control across different actors who are likely to use different
attribute vocabularies; interoperability thus depends on ad-
hoc mechanisms for translating attributes across different
actor domains, a process that is resource- and time-con-
suming, as well as error-prone, in practice.

In contrast, the access control scheme offered by the
PaaSword framework extends the ABAC model with the abil-
ity of fusing semantic knowledge into the process of deciding
whether to permit, or deny, a request. This allows the gener-
ation of new knowledge through semantic inferencing on the
information residing in the contextual attributes that pertain
to a request—e.g. in the example above, the knowledge that
the request indeed originates from within the EU. This ab-
solves application developers from the burden of defining
fine-grained access control policies such as the one in the ex-
ample above.

2.2 Extending ABAC with a Context-aware Policy
Model

The PaaSword framework extends the ABAC model
through the introduction of a generic Policy Model, one that
adheres to the popular XACML standard [12] and views
ABAC policies as finite, non-empty, sets of ABAC rules. A
rule is the most elementary structural element and the
basic building block of policies. It is abstractly described in
terms of the ontological template depicted in Table 1. This
template comprises the following concepts: i) actor iden-
tifies the subject requesting access to perform an operation
on a sensitive object; note that an instantiated ABAC rule
can involve the any_actor instance for describing rules
that do not target any specific actor; ii) context expres-
sion identifies the environmental conditions that must
hold in order to permit, or deny, the performance of an op-
eration on a sensitive object; iii) authorisation deter-
mines the type of authorisation (positive i.e. ‘permit’, or
negative i.e. ‘deny’) that is granted; iv) action identifies
the operation that may, or may not, be performed on the
protected sensitive object; and v) controlled object
identifies the sensitive object on which access is requested.

The ontological template of Table 1 is underpinned by

an extensible Context-aware Security Model (hereafter re-

ferred to as Context Model for simplicity) that captures—in

terms of ontological classes and properties—the various

concepts, and their interrelations, involved in the defini-

tion of a policy. These concepts may involve any kind of

contextual information that is machine-parsable [11] and

pertains to an access request; for example, they may in-

clude the network and physical location of the subject that

issues an access request, the type of device that is used for

issuing the request, as well as the position (or role) that this

subject occupies in a company.

The Context Model (CM) incorporates various facets in-

cluding: i) the Subject class that incorporates concepts for

describing the entity requesting access (e.g. whether it is a

person, a software agent, an organisation, a group, etc.), as

well as any other entity that is deemed relevant to an access

request. Note that the concept actor of the ontological

template of Table 1 draws its instances from this class; ii)

the Object class that incorporates concepts for describing

the (sensitive) object on which access is requested (e.g.

whether it is a relational or non-relational data object, a file,

etc.). Note that the concept controlled object of the

ontological template of Table 1 draws its instances from

this class; iii) the Security Context Element class that incor-

porates concepts for describing the context of an entity rel-

evant to a data access request such as location, date and

time, type of connectivity, etc. Note that the concept con-

text expression of the ontological template of Table 1

interrelates instances from this class with instances from

the classes Subject and Object above; and iv) the Permission

class that incorporates concepts for describing the seman-

tics of the type of access sought (e.g. read-only access,

read/write access, etc.) on the sensitive data. Note that the

concept action of the ontological template of Table 1

draws its instances from this class. A more elaborate ac-

count of the aspects of the CM can be found in [17], [18].

The use of such an ontological template for describing
ABAC rules, hence ABAC policies, essentially disentangles
the definition of a policy from the actual code employed
for enforcing it. This brings about the following seminal
advantages: (i) it allows the performance of semantic infer-
encing, hence the generation of new knowledge, on the ba-
sis of the information already encoded in existing policies;
(ii) it achieves a clear decoupling between the policy deci-
sion and policy enforcement points (PDP and PEP respec-
tively), a decoupling essential for generating dynamically,
during application runtime, fresh access control policies
that capture the new knowledge generated through se-
mantic inferencing; (iii) it forms an adequate basis for rea-
soning generically about the well-formedness of the secu-
rity policies, i.e. whether they include all the information
required for granting, or denying, access to sensitive data,
as well as about inter-policy relations such as subsumption
and contradiction; (iv) it facilitates the overall governance
of policies. For more information on the Policy Model, the
interested reader is referred to [9], [17], [18].

3 POLICY ENFORCEMENT MIDDLEWARE

This section presents an overview of the policy enforce-
ment middleware that implements PaaSword’s context-
aware access control scheme. Fig. 1 depicts the main com-
ponents of this middleware which are detailed below.

The CM Editor enables the relevant stakeholders (e.g.

TABLE 1
ABAC RULE TEMPLATE

[actor] has [authorisation] for [action] on [con-
trolled object] when [context expression]

4 IEEE TRANSACTIONS ON ON CLOUD COMPUTING

DevOps, product manager, cloud application developer)
to customise the CM such that it adequately supports the
expression of policies in the underlying domain of appli-
cation. The role/position of the stakeholder depends, each
time, on the hierarchical structure advocated by the organ-
isation adopting the PaaSword solution, as well as on the
particular rights and obligations that have been assigned
to the various roles/positions that comprise this hierarchy.
This entails the population of the model’s classes with ap-
propriate instances, as well as the potential addition of
new classes and/or properties—these are intended to cap-
ture any aspects of the underlying domain of application
that must be taken into account by the policies and which
have not been included in the generic version of the CM
offered by the PaaSword framework.

The Access Policy Editor enables the relevant stakehold-
ers to create new, or modify existing, context-aware access
control rules and hence policies. The newly-created or
modified rules abide by the ontological template of Table
1 and are founded upon an instantiated version of the CM,
one that has been created through the use of the CM Editor.

The Annotations Governance Mechanism enables the gov-
ernance of the code-level annotations that express access
control policies. Such governance entails automated
checks regarding: (i) the well-formedness of the newly-cre-
ated or modified policies, i.e. whether they include all the
(contextual) information required for granting, or denying,
access to sensitive data; (ii) the disclosure of any inter-pol-
icy relations such as the subsumption, or contradiction, of
the newly-created or modified policies with other existing
policies. In addition, it entails the imposition of potential
restrictions on the entities that are allowed to create and/or
modify policies (e.g. DevOps, product manager, cloud ap-
plication developer), as well as on the (contextual) circum-
stances under which such activities may take place. The

1 In case two or more rules are applicable, conflict resolution is per-
formed on the basis of XACML’s combining algorithms [2] in order to dis-
cern a single ultimately applicable policy rule.

details of the implementation of this mechanism are be-
yond the scope of this paper.

The PaaSword IDE Plugin enables the cloud application
developer to insert code-level annotations that express ac-
cess control policies through the use of Eclipse’s popular
web-integrated environment.

The Access Policy Enforcement Mechanism (also referred
to as semantic authorisation engine) implements the policy
enforcement business logic according to the XACML archi-
tecture, as well as the processing model for evaluating ac-
cess requests. It involves two main components:
• A Production System for monitoring and evaluating the

access control policies in an efficient manner. This sys-
tem comprises the following three primary elements:
the production memory, which contains a set of access
control policy rules; the working memory, which
stores data representing facts and assertions about the
contextual attributes encoded in access control policy
rules; the inference engine, which discerns and exe-
cutes the policy rule applicable to a particular access
request1. It is worth noting here that the production
system employed by the reference implementation of
the PaaSword framework is built around the Drools2
Business Rule Management System due to its perfor-
mance capabilities;

• The ContextModel2ExpertSystemRules parser which is
responsible for infusing inferencing capabilities into
the production system. More specifically, it translates
the semantic knowledge captured in the CM into rules
that are subsequently fed into the production system’s
memory.

The Facts Mechanism feeds the working memory of the Pro-
duction System with real-world facts, i.e. with the values
currently assumed by the contextual attributes encoded in
an access control policy. Clearly, these values are essential

2 http://www.drools.org/

Fig. 1. Policy Design & Enforcement Related Components

VERGINADIS ET AL.: CONTEXT-AWARE POLICY ENFORCEMENT FOR PAAS-ENABLED ACCESS CONTROL 5

for the evaluation of the policy; they are retrieved dynam-
ically, during application runtime, by invoking a number
of appropriate handlers (see Section 4.2 for more details).

The Annotation Interpretation Mechanism undertakes the
task of interpreting the code-level policy annotations into
XACML-based enforceable policies. It comprises two main
components:
• The AttributesLookUp component which is responsible

for informing the Facts Mechanism of which particular
attribute values it should retrieve;

• The PolicyModelBootstrapping component which is re-
sponsible for the actual translation of the code-level
policy annotations into rules expressed in the jargon of
the production system.

Fig. 1 provides a high-level description of the execution
flow of the aforementioned middleware components, un-
veiling their use as well as their interactions. For the re-
maining of this section we describe the main steps of this
flow. These steps are clustered according to the main exe-
cution phases of a PaaSword-enabled cloud application,
namely pre-bootstrapping, bootstrapping and runtime.

The Pre-bootstrapping phase involves the following steps:
i) through the use of the Context Model Editor, the CM is
updated, instantiated, serialised in an appropriate format
and persisted (see Fig.1, step 1); ii) knowledge is extracted
from the Context Model and expressed in the form of Pro-
duction Memory rules (see Fig.1, step 2); iii) a set of appro-
priate access control policies is created by instantiating the
PaaSword Policy Model (see Fig.1, step 3) and subse-
quently validated and persisted (see Fig.1, step 4) in an ap-
propriate serialised format; iv) the PaaSword annotations
that implement these policies are inserted into the cloud
application code (see Fig.1, step 5); and v) suitable handlers
are created and associated with the appropriate classes of
the CM. More specifically, each handler (e.g. geolocation)
is associated with the particular class of the CM (e.g. loca-
tion) that represents the attribute for which the handler
will provide measurements.

The Bootstrapping phase involves the following steps: i)
access policies are fed into the Annotation Interpretation
Mechanism and translated into Production System rules
(see Fig.1, step 6); and ii) appropriate handlers are then se-
lected for providing the necessary data for evaluating the
contextual attributes encoded in the policies.

The Run-time phase involves the following steps: i) an in-
coming access request is intercepted (see Fig.1, step 7) cap-
tured as a triple (s, op, r) that corresponds to a subject
(s) that requires to perform an operation (op) on a certain
protected resource (r); ii) the request is fed into the Anno-
tation Interpretation Mechanism where the contextual in-
formation encoded in the request is extracted (see Fig.1,
step 8); iii) the access control attributes whose values need
to be resolved are recognised on the basis of the applicable
access control policies3 and the corresponding handlers are
queried (see Fig.1, step 9); iv) the values provided by the
handlers are aggregated, semantically uplifted on the basis
of the knowledge captured in the CM (see Fig.1, step 10),
and ultimately uploaded to the working memory of the

3 An access control policy is deemed applicable if it is designated to pro-
tect the controlled object targeted by the access request.

production system (see Fig.1, step 11); and v) the relevant
access control policies are evaluated and the access control
decision is issued (see Fig.1, step 12). Note that a descrip-
tion of the steps ensuing a successful, or not, access request
are beyond the scope of this paper.

4 ANNOTATION INTERPTETATION

4.1 Annotations

Two distinct kinds of annotation are discerned:
@PaaSwordPEP and @PaaSwordEntity. @PaaSwordPEP an-
notations are the vehicle through which access control pol-
icies are infused into the code of cloud applications. In par-
ticular, these annotations decorate the DAO-implementing
Java classes and methods of a cloud application with the
rules, policies and policy sets defined through the Access
Policy Editor (see Section 3). Thus, when an access request
is received during application runtime, the PaaSword
framework evaluates these rules, policies and policy sets
and invokes the corresponding DAO only if a permit deci-
sion is resolved. This evaluation is performed against the
attribute values that are piggybacked on the access request.
The definition of a @PaaSwordPEP annotation that associ-
ates a DAO with a policy set, policy or rule is provided in
Table 2.

@PaaSwordEntity annotations are, on the other hand,
used at the class-level in order to distinguish those classes
that are handled as PaaSword entities, i.e. as containers of

code that feed data to an underlying database during ap-
plication bootstrapping time. This database may be frag-
mented and distributed over a number of different physi-
cal servers for privacy reasons. This gives rise to yet a third
kind of annotations, namely the @PaaSwordDDE annota-
tions which are responsible for specifying the manner in
which sensitive data are fragmented and persisted over
different physical servers. @PaaSwordDDE annotations
shall not further concern us here.

4.2 Security Model Editors

1) CM Editor
As mentioned in Section 3, the CM Editor enables relevant
stakeholders (e.g. DevOps, product manager, cloud appli-
cation developer) to suitably instantiate and customise the
CM in order to support the expression of access control
policies in the underlying domain of an application. Recall

TABLE 2
@PAASWORDPEP ANNOTATION

@Retention(RetentionPolicy.RUNTIME)

@Documented

public @interface PaaSwordPEP {

 String value() default '';

 Type type() default Type.POLICY;

 public enum Type {

 RULE, POLICY, POLICY_SET

 }

}

6 IEEE TRANSACTIONS ON ON CLOUD COMPUTING

from Section 2.2 that the CM constitutes the semantic back-
ground against which access control policies are defined.
It provides the underlying ontological infrastructure, i.e.
the concepts, properties and instances in terms of which
the attributes of a policy are specified. For example, con-
sider an ABAC policy that protects a particular data object
by enumerating the locations from which this object is ac-
cessible. Such a policy hinges upon a location attribute and
thus requires the introduction in the CM of a correspond-
ing Location concept along with its relevant properties
and instances.

In addition, the CM Editor allows the association of CM
concepts, hence of policy attributes, with appropriate han-
dlers. A handler is essentially a software routine that pro-
vides real-time measurements of the current value of an at-
tribute. For instance, in the case of the Location attribute,
one or more handlers must be specified for providing the
whereabouts of a subject that issues an access request to a
particular data object.
2) Access Policy Editor

Once the semantic background is reified, the Access Pol-
icy Editor assists relevant stakeholders in creating and/or
modifying access control policies in a controlled and rule-
based manner. In particular, the Access Policy Editor takes
into account a set of constraints that define the admissible
structure of a policy. These constraints form essentially a
set of meta-policies that articulate the ‘ingredients’ of an
access control policy, i.e. all those attributes along with
their allowable values or value ranges, that a policy must,
may or must not articulate4. Based on these constraints, the
Access Policy Editor exposes a suitable GUI that guides a
user through the process of creating or updating a policy
by providing, at each juncture of this process, the allowa-
ble values that may be selected. In this respect, the Access
Policy Editor advocates a type-safe approach to policy crea-
tion and modification (depicted in Fig. 2 as a typeSafety
interface). Table 3 summarises the main functionalities of

4 These constraints are represented ontologically. The manner in which
these constraints are formulated and represented shall not concern us here.

the Access Policy Editor, along with the particular subcom-
ponents that are responsible for delivering these function-
alities. These subcomponents are depicted in the UML
component diagram of Fig. 2.

In addition, the Access Policy Editor comprises the Pol-
icyModelBootstrapping Parser, a subcomponent responsible
for converting the newly-created or updated policies from
the JSON serialisation in which they are persisted in the
Policy Sets database (see Table 3), to equivalent RDF/TTL
and XACML serialisations; these are then exported to the
PaaSword Models triple store5 and to the Policy Admin-
istration Point (PAP) [12] respectively. The former seriali-
sation is suitable for validating the policies against the con-
straints regarding the admissible structure of a policy,
whereas the latter is suitable for deploying and managing
the policies during application runtime. Table 4 presents
an example of a policy expressed in RDF/TTL whereby a

5 The Apache Jena Fuseki (https://jena.apache.org/documenta-
tion/fuseki2/) triple store is used in particular.

Fig. 2. Access Policy Editor

Policy Editor s GUI

<<UI>>

PaaSword Access Policy Editor

add/UpdatePolicies

<<delegate>>

Expression Editor

Policy Editor

Policy Set Editor

Rule Editor

Policy Set

<<relational database>>

PolicyModelBootstrapping
Parser

<<delegate>>

policySetRDF

<<dependency>>

Hash Map
Repository

queryHashMap

<<delegate>>

typeSafety validation

<<delegate>>

TABLE 3

Access Policy Editor Operations

Functionality
Responsible

subcomponent

Facilitates a user in creating a new, or modify-

ing an existing, context expression (see Section

2.2).

Expression Edi-

tor

Facilitates a user in creating a new, or modify-

ing an existing, policy rule by providing its

identifier, controlled object, action, actor, con-

text expression and, of course, decision.

Rule Editor

Facilitates a user in creating a new, or modify-

ing an existing, policy by providing its identi-

fier, as well as its pertinent rules and combin-

ing algorithm.

Policy Editor

Facilitates a user in creating a new, or modify-

ing an existing, policy set by providing its iden-

tifier, as well as its pertinent policies and com-

bining algorithm. The resulting policy set is se-

rialized in JSON and persisted in the Policy Set

relational database subcomponent.

Policy Set Editor

Fig. 3. Annotation Interpretation Mechanism

PaaSword Annotations Interpretation Mechanism

inferenceEngineRules

<<delegate>>

PolicyModelBootstrapping
Parser

Facts MechanismIntrospection Engine

JSON-LD Pool

<<non-relational
database>>

AttributesLookUp

<<delegate>> policySet

queryHashMap accessRequestacknowledgeFacts
Available

<<delegate>>

applicationCode

codeLogicalValidation

<<delegate>>

PolicySets

Attributes

handlersAndAdapters

StoreAttributesValues

facts

codeAnnotations

<<delegate>>

<<delegate>>

VERGINADIS ET AL.: CONTEXT-AWARE POLICY ENFORCEMENT FOR PAAS-ENABLED ACCESS CONTROL 7

subject acting in the capacity of the role ‘Guard’ can gain
‘write’ access to the resource CarPark.LogEntry only
during working days and hours (this condition is defined
in terms of the context expression ex:IN_Work-

HoursAndDays).
The PolicyModelBootstrapping Parser is also burdened

with the task of discerning the set of attributes that a
newly-created or updated policy comprises and storing
them in a hash map along with the controlled object that
these attributes are designated to protect. More specifi-
cally, each pair in the hash map comprises the URI of a con-
trolled object that is protected by a policy, as well as a list
of ontological classes from the CM that represent the attrib-
utes of the policy (stored in the Hash Map Repository as
depicted in Fig.2). These are effectively the attributes that
need to be evaluated each time an access request that tar-
gets the particular controlled object is received6. An exam-
ple hash map is provided in Table 5; it associates a specific
data object—the controlled object CarPark.LogEntry—
with a number of classes from the CM, namely the classes
Subject, DateTimeInterval, Physical Location
that need to be evaluated each time an access request that
targets CarPark.LogEntry is received. This evaluation
need is acquired by querying the Hash Map Repository
usined the the queryHashMap interface as depicted in Fig.2.

6 Clearly, upon receipt of an access request, the attributes that need to be
evaluated in order to decide whether to permit, or deny, the request must
be quickly determined; this justifies our choice of storing these attributes

4.3 Annotation Interpretation Mechanism

The ultimate goal of the Annotation Interpretation mecha-
nism is to transform @PaaSwordPEP annotations into
XACML-based enforceable access control policies. More
specifically, this mechanism offers the following function-
alities. i) It introspects the source code of a PaaSword-ena-
bled application and determines whether it contains valid
@PaaSwordPEP annotations; this functionality is offered by
the Introspection Engine subcomponent depicted in Fig. 3.
ii) It interprets @PaaSwordPEP annotations into appropri-
ate inference engine rules and persists them in the Produc-
tion Memory of the Production System; this functionality
is offered by the PolicyModelBootstrapping Parser compo-
nent7 (see Fig. 3). iii) It parses the inference engine rules in
the Production System and discerns all those contextual at-
tributes which must be evaluated on the receipt of an ac-
cess request in order to decide upon its permissibility; this
functionality is offered by the AttributesLookUp subcompo-
nent (see Fig. 3). iv) It feeds the Working Memory of the
Production System with facts, i.e. with the current values
of all those contextual attributes discerned by the Attrib-
utesLookUp subcomponent; this functionality is offered by
the Facts Mechanism subcomponent (see Fig. 3).

We next provide brief accounts of the four subcompo-
nents that offer these functionalities.
1) Introspection Engine

Performs a series of correctness checks that aim at de-
termining the logical validity of @PaaSwordPEP annotations.
By ‘logical validity’ we refer here to certain characteristics
of an annotation such as, for example, the uniqueness of
the application name appearing in an annotation, or
whether an annotation decorates a REST or web end point
method. Logical validation takes place through introspec-
tion at the Bytecode level. Note here that the structural va-
lidity of an annotation is not checked for if an application
compiles correctly, structural validity is assured from the
outset.
2) PolicyModelBootstrapping Parser

As depicted in Fig.4, upon the creation or update of an
access control policy, this parser undertakes the task of
translating the relevant rules in RDF triples for validation
purposes. Once validated, it parses the arguments of each
@PaaSwordPEP annotation in order to guarantee that this
policy is used on a certain application and translates it into
rules expressed in the Drools jargon. In parallel, it exports
them using XACML notation and creates hash maps for
fast retrieval of the necessary context attribute values, once
a request is intercepted at run-time. More specifically, this
parser retrieves from the PaaSword Model triple store the
RDF/TTL-serialisation of each rule, policy or policy set
that is referenced from within a @PaaSwordPEP annotation
(e.g. PaaSwordPEP (Type.Policy, “policy1”)) and trans-
lates it into one or more inference-engine production rules.
3) AttributesLookUp

Identifies all those attributes that need to be evaluated
in order to determine whether an access request to a par-
ticular controlled object can be granted. More specifically,

in a hash map indexed by the identifiers of the controlled objects.
7 Note that this is the same component as the one encountered in the

Access Policy Editor mechanism.

TABLE 4
SAMPLE POLICY RULE IN RDF/TTL

Definition of Policy Rule: Rule_1

ex:Rule_1 a pac:ABACRule ;

 dcterms:identifier '3'^^xsd:string ;

 rdfs:label 'Rule_1'^^xsd:string ;

 pac:hasControlledObject

 'eu.paasword.examples.CarPark.LogEntry';

 pac:hasAuthorisation pac:permit ;

 pac:hasAction ex:Write ;

 pac:hasActor ex:Guard ;

 pac:hasContextExpression

 ex:IN_WorkHoursAndDays .

Definition of Context Expression: IN_Work-

ing_Hours_and_Days

ex:IN_Working_Hours_and_Days a

 pac:ANDContextExpression ;

 pac:hasParameter ex:IN_Working_Hours ;

 pac:hasParameter ex:IN_Working_Days ;

 dcterms:identifier '4'^^xsd:string ;

 rdfs:label

 'IN_Working_Hours_and_Days'^^xsd:string .

TABLE 5
EXAMPLE HASH MAP

eu.paasword.examples.CarPark.LogEntry \

http\://www.paasword-project.eu/ontologies/

casm/2016/05/20#DateTimeInterval\

http\://www.paasword-project.eu/ontologies/

casm/2016/05/20#Subject\

 http\://www.paasword-project.eu/ontologies/

 casm/2016/05/20#PhysicalLocation

8 IEEE TRANSACTIONS ON ON CLOUD COMPUTING

it intercepts all incoming access requests and determines,
for each one of them, the id of the controlled object that it
targets. It then uses this id as a search term in order to look
up into the Hash Map repository all those ontological clas-
ses from the CM that represent attributes designated to
protect that controlled object. Finally, it invokes the Facts
Mechanism and passes to it these URIs as arguments.
4) Facts Mechanism

Retrieves the current values of all attributes whose URIs
have been received from the AttributesLookUp compo-
nent. These values are derived from a variety of sources
including, for example, sensors, cell phones, relevant data-
bases and even the request itself. In order to effectively
handle input from such diverse sources, the Facts Mecha-
nism employs a set of handlers—i.e. software routines that
federate the raw data produced by these sources and ex-
tract the required attribute values. Note that each CM class
that represents an attribute is associated with at least one
handler. The Facts Mechanism also employs a set of adapt-
ers that semantically uplift the attribute values emitted by
the handlers by constructing appropriate instances in the
corresponding CM classes. For example, a handler might
emit the current location of an entity involved in an access
control rule in the form of latitude and longitude while an
adapter might perform reverse geocoding for inferring the
relevant city or country. This information takes the form of
an instance of the CM class Location. Finally, the Facts
Mechanism populates the working memory of the Produc-
tion System and triggers the PaaSword Policy Enforcement
Mechanism which is responsible for evaluating access re-
quests (see Section 5).

5 POLICY ENFORCEMENT

5.1 Policy Enforcement Business Logic &
Implementation

The PaaSword Policy Enforcement mechanism is responsi-
ble for evaluating access requests against existing policy

sets and deciding whether to permit, or deny, these re-
quests. The basic component that materialises the policy
enforcement business logic is the Semantic Authorization
Engine (see Fig. 5)—a dedicated Production System that
comprises, at its very core, an Inference Engine that
matches real-world facts against production rules in order
to decide whether to permit, or deny, access requests. As
described in Section 4.3, the facts are produced by the Facts
Mechanism and the various handlers that it employs,
whereas the production rules are generated by the Policy-
ModelBootstrapping Parser which translates RDF/TTL-
expressed rules, policies and policy sets from the
PaaSword Models triple store into production rules.

As depicted in Table 6, a production rule is a two-part
structure comprising an antecedent that articulates all
those conditions that must be satisfied in order for the rule
to be applicable, and a consequent that specifies the actions
that are to be performed if these conditions are indeed sat-
isfied—in our case these actions amount to the permission
or denial of an access request. The rules are stored in the
Production Memory component (see Fig. 5) whereas the
facts reside in the Working Memory.

Two are the main methods of rule execution in a pro-
duction system: backward chaining and forward chaining [19].

Fig. 4. PolicyModelBootstrapping Parser Workflow

Fig. 5. Policy Enforcement Mechanism

PaaSword Policy Enforcement Mechanism

contextModel

<<delegate>>

ContextModel2Expert
SystemRules Parser

Working
Memory

Inference Engine

<<delegate>>

Production
 Memory

Semantic Authorization Engine

rules facts

authorization

availableFacts
Acknowledgement

inference
EngineRules

contextModel
Knowledge

<<delegate>>

accessRequest

facts

TABLE 6
PRODUCTION RULE

When <conditions> then <actions>

VERGINADIS ET AL.: CONTEXT-AWARE POLICY ENFORCEMENT FOR PAAS-ENABLED ACCESS CONTROL 9

The former implements a form of reverse engineering: it
starts off with a particular conclusion (e.g. ‘permit access’)
and reasons about the legitimacy of this conclusion on the
basis of a ruleset that resides in the Production Memory.
Such reasoning is useful when the goal is to identify, for
example, all those conditions that must be fulfilled in order
for a particular controlled object to be accessible.

The latter implements a form of deductive reasoning: it
starts off with a particular scenario, e.g. with certain facts
about the real world, and works its way through a given
ruleset, attempting to generate inferences on the basis of
the applicable rules; these inferences ultimately provide a
conclusion. It is therefore better-suited to our work: each
time an access request is received, a decision (either permit
or deny) needs to be deduced on the basis of a given ruleset
and certain facts about the real world. In the current
PaaSword implementation, the Drools engine is used as a
forward chaining engine.

5.2 Interaction with the Semantic Authorization
Engine

The component diagram in Fig. 5 and the workflow dia-
gram in Fig. 6, depict all the communication endpoints that
the Semantic Authorization Engine uses in order to pro-
ceed with the rules triggering. The Semantic Authorization
Engine makes use of the Annotations Interpretation Mech-
anism outlined in Section 4.3, in order to feed its produc-
tion memory with the appropriate rules. Specifically, dur-
ing engine bootstrapping, it parses all the policy rules and
adds them to the corresponding knowledge base. Once a
request is intercepted from a PaaSword-enabled applica-
tion, the Semantic Authorization Engine makes use of the
Facts Mechanism, in order to create extra facts that enrich
further the working memory, thus allowing the proper
evaluation of all the related policy sets to an incoming ac-
cess request. For example, given the IP-address of a re-
quest, the Annotations Interpretation Mechanism returns
the geographical area that the request comes from. When
an access request to a protected resource is processed by
the PaaSword framework, it is necessary to collect all rele-
vant information available, in order to evaluate the related
policy rules using the most complete and up-to-date infor-
mation. This information may originate from various

8 https://www.w3.org/TR/rdf-sparql-query/

sources, such as the access request itself, data acquired
from sensors and external sources or knowledge extracted
from primitive information. All of them are handled by the
Facts Mechanism and they are used to prime the Working
Memory of the Inference Engine, which performs the ac-
tual evaluation of policy rules. For efficiency reasons, it is
important to keep the minimum amount of data in the
Working Memory, during the rules evaluation process.
Our approach involves the identification, upon an access
request, of which rules should be eventually used, based
on the resource that is to be accessed, and the deduction of
all the relevant attributes in order to populate the Working
Memory only with the necessary facts.

5.3 Interaction with the Context Model

An important task for successfully evaluating an incoming
access request, without having to design fine-grained ac-
cess control rules, is the population of the Production
Memory with knowledge extracted from the Context
Model. In the PaaSword framework, the use of semantics
allows for the implementation of coarse-grained access
control rules, alleviating the design-time effort with re-
spect to coping with the burden of fine-tuning the attrib-
utes used in the rules and the attribute values acquired
from the access request or from external sources. For ex-
ample, the PaaSword adopter may design rules that re-
strict access to sensitive data based on the requestor’s
physical location defined at a country-level, while the
available sources provide location information only at a
city-level. PaaSword’s innovative solution introduces the
handling of the necessary semantics in an efficient way.
Specifically, PaaSword CM supports basic RDF reasoning
which can be mapped to a set of rules through the dedi-
cated ContextModel2ExpertSystemRules Parser. This enables
semantic reasoning within the Semantic Authorization En-
gine. The main goal concerns the efficiency in access con-
trol by keeping the valuable knowledge expressed seman-
tically without having to perform SPARQL8 queries at run-
time. Using the ContextModel2ExpertSystemRules Parser, we
parse the knowledge of CM offline and generate rules that
support, but not limited to: Property Transitivity; Sub-
property Transitivity; Supertype Inheritance; Class Transi-
tivity and Member Induction.

For example (see Fig. 7) based on the CM the “Tablet”,
”Smartphone” and ”Notebook” are subclasses of the class
”Mobile” which is a subclass of the ”Device Type”. We
consider for this example the: a) Supertype inheritance and
b) Class Transitivity as it is presented in Table 7. During
the Production Memory bootstrapping, the rules shown in
Table 8 will be automatically added. All of them come di-
rectly from ContextModel2ExpertSystemRules Parser after
parsing the CM itself. Based on this example, the platform
intercepts an access request originating from the “Sam-
sungN7000” (i.e. initial fact) which is a smartphone (in-
stance of class Smartphone). After firing all the relevant
rules that carry the knowledge of the CM into the expert
system, two additional facts are inferred. First that the
“SamsungN7000” is also a Mobile and second the “Sam-
sungN7000” is an instance of the class DevType. The

Fig. 6. Semantic Authorization Engine Forward Chaining Workflow

10 IEEE TRANSACTIONS ON ON CLOUD COMPUTING

added value of such an approach is that the administrator
or the cloud application developer is not obliged to register
a fine-grained access control rule at the level of sub-classes
Smartphone, Notebook or Tablet depending on what
is the expected value that will be acquired by the inter-
cepted access request. We also note that defining coarse-
grained access control rules becomes a necessity in cases
that the intercepted contextual information is not known
at design-time.

In a similar way, ContextModel2ExpertSystemRules
Parser handles the Combining Algorithms. The Combin-
ing Algorithms per policy or policy set are also trans-
formed into rules during knowledge base initialization.
According to the XACML standard [12] there is a set of
combining algorithms (e.g. Deny-overrides, Permit-over-
rides, First-applicable, etc.) that we support through this
framework. For example the Deny-overrides combining al-
gorithm treats the decisions in such a way that if any rule
outcome is “Deny”, then that decision prevails, although
there might be “Permit” results as well.

6 EVALUATION

We have set up a comparative evaluation test in order to
determine the performance of our solution, compared to a
reference implementation of the XACML standard, namely
the open source WSO2 Balana9 engine. For our initial eval-
uation test, we have created a single Policy Set comprising
a single Policy with an increasing number of Rules and we
have focused on measuring the policy evaluation time (i.e.
execution time) and the RAM consumption. We have grad-
ually increased the number of Rules from 1 to 50000 in a
single Policy. These rules were kept as simple as possible,
essentially concluding at a single match clause that refered
to the inferred current location of the subject of a test re-
quest. For the PaaSword experimental set up, this corre-
sponded to the use of a dedicated context handler (con-
cerning location). Furthermore, in order to approximate a
realistic use of XACML, we have conducted the equivalent
tests using the Balana engine, in which the PDP performs
external retrieval of attributes from an SQL database, dy-
namically during evaluation. The typical case for such ex-
ternal retrieval would be a request carrying the subject-
identifier, and a policy requiring other subject attributes

9 https://github.com/wso2/balana

(e.g. that require a mapping between subject’s latitude and
longitude to countries) for evaluation, that are not present
in the request and that would have to be retrieved on the
fly, based on the subject identifier. This setup of the Balana
engine (called Balana++ for the purposes of our evalua-
tion) is the closest possible emulation of the context-aware
functionality offered by the PaaSword solution. This eval-
uation took place on a private Openstack10 installation, us-
ing two identical virtual machines with 4VCPUs, 8GB
RAM, 80GB Disk and operating system Ubuntu 16.04.3
LTS.

The measurements against the PaaSword Semantic Au-
thorization Engine were performed for a single Policy con-
taining n Rules. These Rules referred to a single Expression
consisting of a single Condition requiring the Subject’s lo-
cation to be equal to a certain value. In order to eliminate
variations in the execution time of a single request, the
measurement script performed several iterations of the
same requests and calculated the average mean. Since the
PaaSword engine uses REST for both internal and external
communication, a network transportation penalty was
considered for the measurement of each request. Given
that the Semantic Authorization Engine is not called di-
rectly but it is invoked by the PaaSword Controller which
handles the policy enforcement points, especially smaller
numbers of Rules are affected by the initial network trans-
portation overhead. The average round trip time was
measured by calling a reference endpoint on the PaaSword
Controller and added to the penalty. By design, the
PaaSword Semantic Authorization Engine uses a handler

10 https://www.openstack.org/

Fig. 7. Context Model Snapshot

TABLE 7
INFERENCE TYPES TO BE TRANSLATED

Inference Type: Supertype inheritance

Logical Formula:

{?A rdfs:subClassOf ?B. ?S a ?A} => {?S a ?B}.

Example:

Smartphone rdfs:subClassOf Mobile. 'Sam-

sungN7000' a Smartphone

 => 'SamsungN7000' a Mobile

Inference Type: Class Transitivity

Logical Formula:

{?B rdfs:subClassOf ?C. ?A rdfs:subClassOf ?B}

=> {?A rdfs:subClassOf ?C}.

Example:

Smartphone rdfs:subClassOf Mobile.

Mobile rdfs:subClassOf DeviceType

 => Smartphone rdfs:subClassOf DeviceType

TABLE 8
DROOLS RULES BASED ON RDFS REASONING

rule 'SupertypeInheritanceSmartphone'

 when

 PCondElem(elemId='device' && value='Smartphone')

 then

 insertLogical(new PCondElem('device','Mobile'))

 end

rule 'ClassTransitivityMobile'

 when

 PCondElem(elemId='device' && value='Mobile')

 then

 insertLogical(new PCondElem('device','DevType'))

 end

VERGINADIS ET AL.: CONTEXT-AWARE POLICY ENFORCEMENT FOR PAAS-ENABLED ACCESS CONTROL 11

mechanism to resolve contextual information. These han-
dlers are implemented by external information services
which introduce again a network transportation overhead
including the service’s individual processing time. Their
average duration was measured, multiplied by the total
count of Rules within the scenario and again added to the
penalty.

The results shown in Fig. 8 take penalties of approxi-
mately 4ms per Rule for the handlers and 71ms for the
communication between measurement script and
PaaSword Controller into account. It becomes evident by
this evaluation that PaaSword solution, due to its ad-
vanced context-aware capabilities, proved to be slower
than the Balana engine-based solution. Moreover, both so-
lutions average execution times increase exponentially af-
ter the significant increase of deployed rules (>1000 rules).
In Fig. 9, a similar trend can be reported for the memory
consumed by each engine for evaluating the increasing
number of rules. Especially, in the case of PaaSword such
an exponential increase of the execution time can be ad-
dressed with certain optimisations on the engine that allow
the parallelization of pattern matching actions (as seen in
the second experiment that follows).

Moreover, as Balana or any other XACML engine
doesn’t support context inferencing, additional code was
required in order to achieve similar capabilities with
PaaSword. In real application scenarios such an implemen-
tation with Balana would be very difficult to maintain
since updates or creation of new policies would require
manual updates of this code. This fact constitutes a signif-
icant advantage of PaaSword paid with some time penalty
as the number of rules increases. In addition, since the
PaaSword engine features semantic access control based
on an extensible model, each authorization request re-
quires pre-processing by the PaaSword Controller before
the Semantic Authorization Engine is called. This pre-pro-
cessing step transforms the incoming request into a con-
crete set of addressable Rules to be handled by the engine.
The Semantic Authorization Engine then creates addi-
tional negation rules as the basis of PaaSword's approach
of a closed world assumption. While, in Balana, the de-
ployed rules, include context expressions with one attrib-
ute and with a set target value that should be detected in
order to provide an authorisation permit result.

11 https://docs.jboss.org/drools/release/7.19.0.Final/drools-

docs/html_single/index.html

Nevertheless, a second series of experiments were con-
ducted to further study the behavior of PaaSword under
various loads of simultaneous requests. This second round
of experiments was conducted with an upgraded version
of the PaaSword ABAC engine, which relied on a radically
enhanced release of Drools reasoning engine (version
7.19.0.Final). The engine is now able to evaluate more busi-
ness rules simultaneously by dividing the RETE and
PHREAK11 pattern-matching algorithms in independent
partitions and evaluating them in parallel. This inherent
capability improved throughput and reduced significantly
the processing time per request.

The experiments were conducted as follows. The ABAC
engine was provided with an initial set of knowledge tri-
ples for specific Subjects, Objects, Actions and their prop-
erties. After the initialization, many concurrent sets of au-
thorization requests were submitted to the engine. These
sets included 10, 100, 200, 300, 400, 500, 600, 700, 800, 900
and 1000 simultaneous requests. Every 100ms the engine
was queried in order to infer the amount of requests that
have been replied. A specific probe was installed to meas-
ure the end-to-end execution time along the memory con-
sumption.

This flow was repeated for 4 different setups. The first
setup includes an ABAC engine hosting only one rule file
with one context expression. The second setup includes an
ABAC engine hosting only one rule file with a complex
context expression (with 10 attributes). The third setup in-
cludes an ABAC engine hosting 10 rules with a complex
expression. Finally, the fourth setup relates to an engine
hosting 10 policies with 10 rules each. Each request was ac-
companied by a random set of attributes and each experi-
ment (e.g. 10 simultaneous requests for setup 1) was con-
ducted 10 times in order to get unbiased results. Fig. 10
gives the average serving time of a single request, as the
number of simultaneous requests increases (lines P-Setup
1-4). The corresponding times of Balana++ are also in-
cluded for comparison (B-Setup 1-4). Executions with less
than 300 simultaneous requests completed too fast (poll
time was 100ms), hence their measurements have been
considered inaccurate and have been omitted.

According to the Fig. 10, the average request serving
time for PaaSword engine seems to converge as the num-
ber of requests increases. Contrary the corresponding

Fig. 8. PaaSword vs. Balana++ – Total execution time

Fig. 9. PaaSword vs. Balana++ – Memory consumption

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1 10 100 1000 10000 50000

A
ve

ra
ge

 E
xe

cu
ti

on
 T

im
e

(m
s)

Number of Rules

Balana++ PaaSword

0

100

200

300

400

500

600

700

1 10 100 1000 10000 50000

M
e

m
o

ry
 C

o
n

su
m

p
ti

o
n

 (
M

B
)

Number of Rules

Balana++ PaaSword

12 IEEE TRANSACTIONS ON ON CLOUD COMPUTING

readings of Balana++ linearly increase. PaaSword engine
measurements span from 1.4ms (setup 1) up to 4.4ms
(setup 4), and clearly outperform Balana++ as the parallel-
ization capabilities of the upgraded and underlined Drools
engine significantly improved the results.

7 RELATED WORK

This section outlines related work for the main area of at-
tention of this paper, namely access control models; it also
outlines related work for policy expression and manage-
ment as it forms a seminal part of our work.

7.1 Access Control Models

One can generally discern three “traditional” access con-
trol models [20]: Mandatory Access Control (MAC), Dis-
cretionary Access Control (DAC) and Role-Based Access
Control (RBAC); these are also known as identity-based
models for they identify users and resources based on their
(unique) names [21]. Identity-based models are inherently
inadequate for cloud computing as they can only fulfil se-
curity requirements in specific environments [22]; they are
also context insensitive by-design. Several research efforts
have been proposed aiming at extending these models
with features that potentially render their use adequate in
cloud settings [23]; these efforts are briefly outlined below.

7.1.1 Extending RBAC for Cloud Computing

In [24], Tianyi et al. propose the cloud optimized RBAC
model (coRBAC) which inherits features from distributed
RBAC (dRBAC). coRBAC merges dRBAC’s decentralised
authentication services and isolates different organizations
by implementing an internal RBAC in each one of them.
The approach heavily depends upon a Certificate Author-
ity (CA) for issuing user certificates which may cause effi-
ciency and scalability problems as a new certificate must
be issued each time access is required; in addition, it con-
stitutes a single point of attack.

In [25], the authors propose a Task-Role-Based Access
Control (T-RBAC) scheme for cloud-based health care sys-
tems. T-RBAC enables dynamic activation and revocation
of user permissions based on the task at hand, whilst it in-
troduces a workflow authorization model for synchroniz-
ing workflow with authorization flow. Nevertheless, it
fails to discern sensitivity levels for protected data objects,
whilst it is not clear how authorization information may be

meaningfully shared between different health institutions.
In [26], Wang et al. recognise that trust is a main concern

in cloud computing due mainly to the large number of us-
ers and the diverse role classifications utilised across dif-
ferent clouds; they therefore propose an adaptive access al-
gorithm that enriches RBAC with trust relationships be-
tween cloud service providers and cloud consumers. Trust
levels are calculated dynamically, based on observed user
behaviour.

In [22], Younis et al. propose an RBAC-based access con-
trol model for cloud computing in which users are classi-
fied based on their jobs and are thus placed in a security
domain relative to their role; each role comprises a set of
tasks, and each task has its individual security classifica-
tion. Dynamic and random behaviours of users are consid-
ered by introducing a risk engine, whereas security tags
are issued in untrusted or semi-trusted environments that
comprise a user’s role, classification, and permissions.

In [27], Hummer et al. propose an RBAC-based model
for defining and enforcing Identity and Access Manage-
ment (IAM) policies in cross-organizational SOA business
processes. The processes are described using the WS-BPEL
standard, whilst the access policies (roles, permissions and
mutual exclusion relations between roles) are expressed in
a domain-specific language (DSL) for abstracting away
from technological details and involving domain experts
in the security modeling process. At deployment time, the
WS-BPEL process is instrumented with special activities to
ensure its compliance to the IAM policies at runtime

A main drawback of the aforementioned approaches
compared to the work presented here is that they fail to
effectively integrate, hence take into account, dynamically-
evolving contextual information in access control deci-
sions. As already stated, this is an important prerequisite
for coping effectively with security challenges in the cloud
domain, especially in cases where a lot of context manifes-
tations should be considered [13].

7.1.2 Infusing Context Awareness

In an attempt to enhance security in remote service ac-
cesses, a number of efforts have focused on extending
identity-based models with location-awareness [20, 28].
Location-aware access control (LAAC) enables access deci-
sions to take into account the physical location from which
access requests originate. Nevertheless, even though
LAAC models have been studied extensively [28], they
generally lack the ability to consider any contextual attrib-
utes other than the subjects’ physical location (and, of
course, its credentials). To overcome this limitation, sev-
eral apporaches that attempt to integrate a wider range of
contextual attributes have been proposed. In [29], the au-
thors propose a scheme that also considers the temporal
characteristics of a request. In [16], Hu et al. propose the
Attribute-based Access Control (ABAC) scheme which is ca-
pable of taking into account any attribute that synthesises the
context of an entity that is deemed relevant to a request; nota-
bly, ABAC has gained increased popularity due to its diffused
XACML implementation that has been endorsed as an OASIS
standard [12].

Fig. 10. PaaSword* vs. Balana++ – Average request serving time

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

300 400 500 600 700 800 900 1000

A
ve

ra
ge

 R
eq

u
es

t
Se

rv
in

g
Ti

m
e

(m
s)

Number of Simultaneous Requests

P-Setup 1 P-Setup 2 P-Setup 3 P-Setup 4

B-Setup 1 B-Setup 2 B-Setup 3 B-Setup 4

VERGINADIS ET AL.: CONTEXT-AWARE POLICY ENFORCEMENT FOR PAAS-ENABLED ACCESS CONTROL 13

In a similar vein, the authors in [30] propose the Con-
text-Aware RBAC (CA-RBAC) model for pervasive appli-
cations that is able to integrate and use contextual infor-
mation generated from ambient sensors in an “active
space”. Covington et al. –motivated by the needs of intelli-
gent home applications– introduce the notion of context-
aware access control (CAAC) [31]; they propose a set of
services that are security-enabled based on the location of
not only the subject of a request, but also of the targeted
object; however, as opposed to the work reported here, the
proposed model fails to account for the specicifity of spa-
tial information such as the multi-granularity of the posi-
tion. In [32], Y. Yang et al. propose an IAM Architecture for
cloud computing, based on several security services of-
fered to cloud customers; they seem to lack, however, the
foundation in established and diffused access control
standards, such as XACML, and instead invent new termi-
nology for well-defined IAM concepts. In [33], Lodderstedt
et al. propose SecureML, an RBAC-based modelling lan-
guage for integrating access control information into appli-
cation models expressed in UML; the authors introduce the
notion of authorization constraints that are expressed in
the Object Constraint Language (OCL) and articulate con-
textual conditions that must be fulfilled for granting access
to sensitive resources.

A main drawback of the aforementioned approaches
compared to the work presented here is their inability to
define a flexible and extensible underlying context model
that would permit the definition of relationships between
contextual attributes, thus paving the way for automated
reasoning about the satisfaction of access control policies
in the face of evolving and dynamically-generated contex-
tual conditions; naturally, as discussed in Section 2, this
renders these schemes overly rigid for the requirements of
cloud-based systems as the contextual information piggy-
backed on access requests must necessarily match, at the syn-
tactic level, the corresponding information encoded in the
policies.

To overcome this limitation, the access control models
proposed in [34—37] advocate two main design guide-
lines: (i) they incorporate context-awareness to control re-
source access and to enable dynamic adaptation of policies
depending on context changes; (ii) they employ semantic
technologies for context/policy specification to allow
high-level description and reasoning about context and
policies12. Compared to our work, however, none of these
approaches has been designed to provide fine-grained
data access control, e.g. by providing the ability to specify
different access rules for different rows of a database.
Moreover, as opposed to our work, none of these ap-
proaches provides any means for generically describing
access control policies which crucially precludes any auto-
mated checks regarding: (i) the well-formedness of policies,
i.e. whether policies include all the (contextual) information
required for granting, or denying, access to sensitive data; (ii)
the disclosure of any inter-policy relations such as subsump-

12 On a similar note, the XACML Technical Committee discussed possi-
ble approaches of enriching ABAC with semantic technologies (see
https://wiki.oasis-open.org/xacml/XACMLandRDF); however, these

tion and contradiction. Such checks are clearly of utmost im-
portance for they increase our assurance on the effectiveness
of the policies, especially of complex ones that integrate a
multitude of contextual attributes. Last but not least, as op-
posed to our work, none of these approaches addresses the
scalability issues that semantic reasoning brings about.

7.1.3 Attribute-Based Encryption

Recently Attribute-Based Encryption (ABE) has gained
popularity as a data access control mechanism, where en-
cryption keys are derived based on contextual attributes
that characterise a user, thus allowing any user with the
right attributes to successfully decrypt and access the en-
crypted files. The ABE paradigm has been applied to cloud
computing in several different approaches, e.g. [38—42].
ABE-based solutions have three major limitations com-
pared to our approach: First, ABE is only applicable for
data access control; other resources (e.g. services, actua-
tors) cannot be controlled with ABE since no additional en-
forcement mechanisms beyond encryption are typically
employed. Second, when a user's attributes are revoked in
an ABE system, all files associated to the attributes have to
be re-encrypted and the keys to be updated. This puts
heavy computation and key update requirements on the
data owner or the system to which the owner has dele-
gated this task. Last but not least, ABE-based solutions are
bound to predefined sets of attributes which renders them
overly rigid for the requirements of cloud-based systems
as the contextual information piggybacked on access requests
must necessarily match, at the syntactic level, the correspond-
ing attribute values articulated by the encryption scheme.

Table 9 summarises how the works outlined in this sec-
tion, compare to our work. The comparison is based on five
distinct criteria that are seminal for judging the suitability
of an approach for cloud settings. Based on this table, it be-
comes evident that none of the reviewed works are able to
demonstrate support that satisfies all these five criteria.
The work introduced in this paper addresses all these as-
pects and with respect to the context sensitivity, it is able
to cope with dynamically-generated contextual attributes.

7.2 Policy Management

As shown in [43], a major weakness of contemporary open-
source registry and repository systems is that policy defi-
nition and policy enforcement are entangled in the imple-
mentation of a single software component: the rules that a
policy comprises are typically encoded in an imperative
manner, as part of the same code that checks for potential
policy violations. This has a number of negative repercus-
sions among which is the lack of portability and the lack of
explicit representation of policy relationships. To over-
come this weakness, the research community has consid-
ered approaches that promote declarative policy represen-
tations; these approaches may be discerned into purely
syntactic and semantic ones.

discussions have yet to lead to the development of any standard docu-
ments.

14 IEEE TRANSACTIONS ON ON CLOUD COMPUTING

7.2.1 Syntactic Descriptions

Syntactic descriptions were introduced along with the Ser-
vice Oriented Architecture (SOA) model as part of a stand-
ardisation efforts aiming, primarily, at facilitating interop-
erable data exchanges in interactions. In the realm of poli-
cies and policy-based applications, syntactic descriptions
promote a declarative approach to policy expression, one
which aims at tackling the disadvantages of encoding pol-
icies imperatively [18]. A number of formalisms that advo-
cate the use of markup languages for the declarative rep-
resentation of policies have been proposed (RuleML13,
XACML [12], WS-Trust [44]). Although they succeed in
disentangling the representation of policies, from the code
employed by an application for enforcing them, these for-
malisms lack any form of semantic agreement outside the
confines of the organisations that created them. Any in-
teroperability, thus hinges on ad-hoc vocabularies that are
shared by the various stakeholders that participate in an
interaction. This inevitably brings about the following dis-
advantages: (i) it restricts the portability and reusability of
policies; (ii) it hampers the determination of inter-policy
relations; (iii) it leads to ad-hoc reasoning about policy
compliance, one which is perplexed with the particular vo-
cabularies that are utilised for expressing the rules accord-
ing to which the reasoning takes place; (iv) it hinders the
performance of rule-based policy governance.

7.2.2 Semantic Approaches

To overcome these disadvantages, a number of seman-
tically-rich approaches to the specification of policies have
been proposed [45, 46]. These generally embrace Semantic
Web representations (e.g. OWL14) for capturing the
knowledge artefacts that underly policies. More specifi-
cally, these approaches employ ontologies in order to as-
sign meaning to actors, actions and resources. Being a for-
mal, explicit specification of a shared conceptualization
[47], an ontology provides a flexible, formal, and unambig-
uous means of agreement upon the semantics of concepts,
and their interrelations, in a given domain of discourse. In
[45], the authors propose KAoS – a general-purpose frame-
work for managing, monitoring and enforcing a wide
range of policies. In [46], the authors propose POLICYTAB
for facilitating trust negotiation in Semantic Web environ-
ments. The aforementioned semantically-enhanced ap-
proaches rely on bespoke, non-standards-based, ontolo-
gies for the representation of policies. This by definition re-
stricts the generality, hence the portability and reusability
of the policies that they represent. In contrast, our reliance
on Linked-USDL raises this restriction. In addition, their
reliance on OWL, despite the obvious benefits stemming
from the rich set of properties that OWL offers, raises con-
cerns about the degree to which these approaches are light-
weight, hence their performance is questionable.

8 CONCLUSIONS

We have proposed, implemented and evaluated an ap-
proach based on the popular access control standard

13http://wiki.ruleml.org/index.php/SpecicationofDelibera-
tionRuleML1:01

XACML, which adds semantic reasoning capabilities to the
policy design, attribute gathering, and policy evaluation
process. Using this approach, we can bridge the gap be-
tween syntactically different, but semantically equal attrib-
utes that are relevant for policy evaluation, thus furthering
federation of policies, and related attribute gathering be-
tween different administrative domains.

Based on the performed comparative evaluation, two
series of experiments were conducted. The first one in-
volved an increasing number of rules to be evaluated while
the second one involved an increasing number of simulta-
neous access requests. The PaaSword solution, proved to
be slower than the Balana WSO2 engine in the first set of
experiments. But, before conducting the second experi-
ment PaaSword was upgraded based on the latest version
of the underlying Drools engine. Based on the advanced
parallelization capabilities of the rule engine PaaSword
outperformed Balana++ with respect to the average re-
quest serving time for a static number of rules deployed.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from the EU's H2020 programme under grant agreement
No 644814, the PaaSword project (www.paasword.eu).

REFERENCES

[1] Cisco. Cloud: What an Enterprise Must Know, Cisco White Paper
[Online]. Available: https://www.avitgroup.com/wp-content/up-
loads/2016/07/Cisco-Cloud-What-an-Enterprise-Must-Know.pdf,
2011.

14 https://www.w3.org/OWL/

TABLE 9
COMPARISON CRITERIA

Criteria Yes No

C
o

n
te

x
t

se
n

si
ti

v
it

y
 Location-only [20, 28]

[22,
24—27]

Predefined only
contextual attributes

[31, 38—
42]

Dynamically-generated
contextual attributes

[16, 29, 30,
32, 33]

Fine-grained access control (sen-
sitivity differentiation of tar-
geted objects)

[22, 41]

[16, 20,
22,
24—33,
38—42]

Semantic technologies to enable

high-level description and rea-
soning about context and poli-
cies

[34—37]

[16, 20,
22,
24—33,
38—42]

Scalability issues stemming
from semantic reasoning

None
[16, 20,
22,
24—42]

Automated checks regarding ac-
cess control policy well-formed-
ness and disclosure of inter-pol-
icy relations

VERGINADIS ET AL.: CONTEXT-AWARE POLICY ENFORCEMENT FOR PAAS-ENABLED ACCESS CONTROL 15

[2] G. A. Moore, A. "Crossing the Chasm: Marketing and Selling Technol-
ogy Products to Mainstream Consumers," Harper Business, 1991, New
York, NY, ISBN:006-662002-3.

[3] CSA, "The Notorious Nine. Cloud Computing Top Threats in 2013,"
Cloud Security Alliance, 2013 [Online]. Available:
http://www.cloudsecurityalliance.org/topthreats.

[4] RightScale, "State of the cloud report," RightScale, 2017 [Online]. Avail-
able: https://www.rightscale.com/2017-cloud-report.

[5] D. Povar, G. Geethakumari, "Digital Forensic Architecture for Cloud
Computing Systems: Methods of Evidence Identification, Segregation,
Collection and Partial Analysis. Information Systems Design and In-
telligent Applications," in Proceedings of Third International Conference,
India, 2016, Volume 1, 10.1007/978-81-322-2755-7_22.

[6] T. A. Hemphilla, P. Longstreetb, "Financial data breaches in the U.S.
retail economy: Restoring confidence in information technology secu-
rity standards, " Technology in Society, vol. 44, pp. 30-38, Feb. 2016,
http://dx.doi.org/10.1016/j.techsoc.2015.11.007.

[7] F. Bieker, et al., "A Process for Data Protection Impact Assessment Un-
der the European General Data Protection Regulation," Annual Privacy
Forum, Springer International Publishing, LNCS 9857, pp. 21-37, 2016,
DOI: 10.1007/978-3-319-44760-5_2.

[8] N. Paladi, A. Michalas, "One of our hosts in another country: Chal-
lenges of data geolocation in cloud storage," In proceedings of the 4th In-
ternational Conference on Wireless Communications, Vehicular Technol-
ogy, Information Theory and Aerospace Electronic Systems (VITAE),
pp. 1-6, 2014, DOI:10.1109/VITAE.2014.6934507.

[9] Y. Verginadis, G. Mentzas, S. Veloudis, I. Paraskakis, "A survey on con-
text security policies, " In proceedings of the 1st International Workshop
on Cloud Security and Data Privacy by Design (CloudSPD'15), co-located
with the 8th IEEE/ACM International Conference on Utility and
Cloud Computing (UCC), IEEE/ACM, 2015.

[10] G. Abowd, E. Mynatt, "Charting past, present, and future research in
ubiquitous computing," ACM Transactions on Computer-Human Interac-
tion (TOCHI) - Special issue on human-computer interaction in the
new millennium, pp. 29-58, 2000.

[11] A. K. Dey, "Understanding and Using Context," Personal and Ubiqui-
tous Computing Journal, vol. 5, no. 1, pp. 4-7, 2001.

[12] E. Rissanen (ed.), "eXtensible Access Control Markup Language
(XACML) Version 3.0," Organisation for the Advancement of Structured
Information Standards (OASIS), OASIS Standard, January 2013. [Online]
Available: http://docs.oasis.org/xacml/3.0/xacml-3.0-core-spec-os-
en.pdf.

[13] Y. Verginadis, A. Michalas, P. Gouvas, G. Schiefer, G. Hübsch, I. Par-
askakis, "PaaSword: A Holistic Data Privacy and Security by Design
Framework for Cloud Services, " In proceedings of the 5th International
Conference on Cloud Computing and Services Science (CLOSER 2015), Lis-
bon, Portugal, May 2015, DOI: 10.5220/0005489302060213.

[14] N. Paladi, A. Michalas, C. Gehrmann, "Domain based storage protec-
tion with secure access control for the cloud," In proceedings of the Inter-
national Workshop on Security in Cloud Computing, ACM, New York,
NY, USA, ASIACCS '14, 2014, DOI: 10.1145/2600075.2600082.

[15] N. Santos, K. P. Gummadi, R. Rodrigues, "Towards trusted cloud com-
puting, " In proceedings of the Conference on Hot Topics in Cloud Compu-
ting, USENIX, Berkeley, CA, USA, HotCloud'09, 2009, URL:
http://dl.acm.org/citation.cfm?id=1855533.1855536.

[16] V. C. Hu, D. Ferraiolo, R. Kuhn, A. Schnitzer, K. Sandlin, R. Miller, K.
Scarfone, "Guide to Attribute Based Access Control (ABAC) Definition
and Considerations," NIST Special Publication 800-162, 2014, URL:
http://dx.doi.org/10.6028/NIST.SP.800-162.

[17] S. Veloudis, Y. Verginadis, I. Patiniotakis, I. Paraskakis and G.
Mentzas, "Context-aware Security Models for PaaS-enabled Access
Control," In proceedings of the 6th International Conference on Cloud Com-
puting and Services Science (CLOSER 2016), Italy, April 23-25, 2016.

[18] Y. Verginadis, I. Patiniotakis, G. Mentzas S. Veloudis, I. Paraskakis,
"Data Distribution and Encryption Modelling for PaaS-enabled Cloud
Security", In proceedings of the 2nd International Workshop on Cloud Secu-
rity and Data Privacy by Design (CloudSPD'16), co-located with the 8th
IEEE International Conference on Cloud Computing Technology and
Science (CloudCom 2016), Luxembourg, December 12-15, 2016.

[19] K. Sachin, S. Jaloree, and R. S. Thakur, "Performance Comparison be-
tween Forward and Backward Chaining Rule Based Expert System
Approaches Over Global Stock Exchanges," International Journal of
Computer Science and Information Security, vol.14, no. 3, 2016.

[20] M. Decker, "Modelling of location-aware access control rules," Hand-
book of Research on Mobility and Computing: Evolving Technologies and
Ubiquitous Impacts, IGI Global, pp. 912-929, 2011, DOI: 10.4018/978-
1-60960-042-6.ch057.

[21] A. R. Khan, "Access control in cloud computing environment," ARPN
Journal of Engineering and Applied Science, vol. 7, no. 5, pp. 613-615, 2012.

[22] Y. A. Younis A., K. Kifayat, M. Merabti. “An access control model for

cloud computing.” J. Inf. Sec. Appl. 19 (2014): 45-60.
[23] Y. Verginadis, A. Michalas, P. Gouvas, G. Schiefer, G. Hubsch, I. Par-

askakis, "PaaSword: A Holistic Data Privacy and Security by Design
Framework for Cloud Services," Journal of Grid Computing, pp. 1-16,
2017, DOI: 10.1007/s10723-017-9394-2.

[24] Tianyi Z, Weidong L, Jiaxing S, “An efficient role-based access control
system for cloud computing”, In proceedings of the 11th International
Conference on Computer and InformationTechnology, IEEE, Pafos, Cyprus,
pp. 97—102, 2011, DOI: 10.1109/CIT.2011.36.

[25] H. A. Jayaprakash Narayanan, M. H. Gunes, “Ensuring access control
in cloud provisioned healthcare systems.” In proceedings of the 2011
IEEE Consumer Communications and Networking Conference (CCNC),
IEEE, 2011, pp. 247–251, DOI: 10.1109/CCNC.2011.5766466.

[26] W. Wang, J. Han, M. Song, X. Wang, “The design of a trust and role-
based access control model in cloud computing.” In proceedings of the
6th International Conference on Pervasive Computing and Applications,
IEEE, 2011, pp. 330–334, 2011, DOI: 10.1109/ICPCA.2011. 6106526.

[27] W. Hummer, P. Gaubatz, M. Strembeck, U. Zdun, S, Dustdar, “An in-

tegrated approach for Identity and Access Management in SOA Con-

text,” In proceedings of the 16th ACM Symposium on Access Control Models

and Technologies (SACMAT’11), Innsbruck, Austria, pp. 21—30, 2011.
[28] A. Cleeff, W. Pieters, R. Wieringa, "Benefits of location-based access

control: A literature study," In proceedings of the IEEE/ACM Interna-
tional Conference on Green Computing and Communications & Interna-
tional Conference on Cyber, Physical and Social Computing, IEEE Com-
puter Society, Washington, DC, USA, GREENCOM-CPSCOM'10, pp.
739-746, 2010, DOI: 10.1109/GreenCom-CPSCom.2010.148.

[29] S. M. Chandran, J. B. D. Joshi, "Lot-rbac: A location and time-based
rbac model," In proceedings of the 6th International Conference on Web In-
formation Systems Engineering, Springer-Verlag, Berlin, Heidelberg,
WISE'05, pp. 361-375, 2005, DOI: 10.1007/11581062 27.

[30] D. Kulkarni, A. Tripathi, "Context-aware role-based access control in
pervasive computing systems," In proceedings of the 13th ACM Sympo-
sium on Access Control Models and Technologies, ACM, New York, NY,
USA, SACMAT'08, pp. 113-122, 2008, DOI: 10.1145/1377836.1377854.

[31] M. J. Covington, W. Long, S. Srinivasan, A. K. Dev, M. Ahamad, G. D.
Abowd, "Securing context-aware applications using environment
roles," In proceedings of the Sixth ACM Symposium on Access Control
Models and Technologies, ACM, New York, NY, USA, SACMAT'01, pp.
10-20, 2001, DOI:10.1145/373256.373258.

[32] Y. Yang, X. Chen, G. Wang, L. Cao, “An Identity and Access Manage-
ment Architecture in Cloud”, In proceedings of the 7th International Sym-
posium on Computational Intelligence and Design, IEEE, Hangzhou,
China, 2014, DOI: 10.1109/ISCID.2014.221.

[33] T. Lodderstedt, D. A. Basin, J. Doser, "Secureuml: A uml-based model-
ing language for model-driven security," In proceedings of the 5th Inter-
national Conference on The Unified Modeling Language, Springer-Verlag,
London, UK, UML'02, 2002, pp. 426-441.

[34] H. Shen, Y. Cheng, "A context-aware semantic-based access control
model for mobile web services," Advanced Research on Computer Science
and Information Engineering, Communications in Computer and Infor-
mation Science, Springer Berlin Heidelberg, vol. 153, pp. 132-139, 2011,
DOI: 10.1007/978-3-642-21411-0 21.

[35] A. Toninelli, R. Montanari, L. Kagal, O. Lassila, "A semantic context-
aware access control framework for secure collaborations in pervasive
computing environments," In proceedings of the 5th International Confer-
ence on The Semantic Web, Springer-Verlag, Berlin, Heidelberg,
ISWC'06, pp. 473-486, 2006, DOI: 10.1007/11926078 34.

16 IEEE TRANSACTIONS ON ON CLOUD COMPUTING

[36] A. S. M. Kayes, J. Han, A. Colman, "An ontology-based approach to
context-aware access control for software services," In Lin X, Mano-
lopoulos Y, Srivastava D, Huang G (eds) WISE, Springer, Lecture Notes
in Computer Science, vol. 8180, pp. 410-420, 2013.

[37] L. Costabello S. Villata, F. Gandon, "Context-aware access control for
rdf graph stores," Frontiers in Artificial Intelligence and Applications,
Raedt LD, Bessiere C, Dubois D, Doherty P, Frasconi P, Heintz F, Lucas PJF
(eds) ECAI, IOS Press, vol. 242, pp. 282- 287, 2012.

[38] G. Wang, Q. Liu, J. Wu, and M. Guo, "Hierarchical attribute-based en-
cryption and scalable user revocation for sharing data in cloud serv-
ers," Computers Security, vol. 30, no. 5, pp. 320-331, 2011.

[39] M. Zhou, Y. Mu, W. Susilo, and J. Yan, "Piracy-preserved access con-
trol for cloud computing," In proceedings of the IEEE TrustCom'11, pp.
83-90., 2011.

[40] Z. Yan, X. Li, M. Wang, A. V. Vasilakos, "Flexible Data Access Control
Based on Trust and Reputation in Cloud Computing," IEEE Transac-
tions on Cloud Computing, vol. 5, no. 3, pp. 485-498, 2017.

[41] H. He, R. Li, X. Dong, Z. Zhang, “Secure, Efficient and Fine-Grained
Data Access Control Mechanism for P2P Storage Cloud”, IEEE Trans-
actions on Parallel and Distributed Systems, vol. 25, no. 7, pp. 471—484,
2014.

[42] K. Yang, X. Jia, “Expressive, Efficient and Revocable Data Access Con-
trol for Multi-Authority Cloud Storage”, IEEE Transactions on Cloud
Computing, vol. 2, no. 4, pp. 1735—1744, 2014

[43] D. Kourtesis, I. Paraskakis, "A registry and repository system support-
ing cloud application platform governance," In proceedings of the Inter-
national Conference on Service-Oriented Computing, Springer-Verlag, Ber-
lin, Heidelberg, ICSOC, pp. 255-256, 2012, DOI: 10.1007/978-3-642-
31875-7 36.

[44] WS-Trust 1.3, OASIS [Online]. Available: http://docs.oasis-
open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc

[45] A. Uszok, J. Bradshaw, R. Jeffers, M. Johnson, A. Tate, J. Dalton, and S.
Aitken, "KAoS Policy Management for Semantic Web Services," IEEE
Intelligent Systems, vol. 19, no. 4, pp. 32-41, 2004.

[46] W. Nejdl, D. Olmedilla, M. Winslett, C. C. Zhang, "Ontology-Based
policy specification and management, " In proceedings of ESWC'05,
Springer-Verlag, Berlin, Heidelberg, pp. 290-302, 2005.

[47] T. R. Gruber, "Toward principles for the design of ontologies used for
knowledge sharing," International Journal of Human-Computer Studies,
vol. 4, pp. 907-928, 1995, DOI: 10.1006/ijhc.1995.1081.

Yiannis Verginadis received his Ph.D. degree in
Electrical and Computer Engineering from the Na-
tional Technical University of Athens (NTUA),
Greece in 2006. He is currently a senior researcher
at the Institute of Communications and Computer
Systems (ICCS). He has more than ten years of
experience in R&D projects and presents a strong
publication record in: information systems, BPM
and cloud computing.

Ioannis Patiniotakis received his Ph.D. degree in
Electrical and Computer Engineering from the
NTUA, Greece in 2015. He is currently a re-
searcher at the ICCS. Since 1998 he has been em-
ployed as a professional software engineer in ma-
jor software and consulting firms in Greece. His re-
search interests include semantic web, cloud com-
puting and security, recommender and decision

support systems.

Panagiotis Gouvas received his Ph.D. degree in
Electrical and Computer Engineering from the
NTUA, Greece in 2011. He is currently the R&D
Director of Ubitech Ltd. He is a Member of the
Technical Committee of OASIS Cloud Application
Management for Platforms (Schema CAMP), and
he is the Workshop Leader of DIN SPEC 91337
dealing with Unified Application Management In-
terface for Cloud Application Platforms.

Spyros Mantzouratos currently works as senior
researcher and integration engineer in Ubitech
Ltd. He has an extensive experience in industry
with respect to integration and development with
a strong focus on cloud security. His research in-
terests include cloud computing, access control
and fog computing.

Simeon Veloudis holds a BSc and a PhD degree
in Computer Science from the University of Read-
ing. He has been employed for several years as a
lecturer at various educational institutions. Cur-
rently he is a research associate at the South East
European Research Centre (SEERC). His re-
search interests lie in the realms of formal security
modelling, in cloud computing, and in real-time
safety critical systems.

Sebastian Thomas Schork received his BSc de-
gree in computer science and his MSc in computer
science with the emphasis on intelligent systems
from Karlsruhe University of Applied Sciences,
Germany, in 2015 and 2016. He is currently work-
ing as Software Engineer and Researcher on var-
ious research projects at CAS Software AG, Karls-
ruhe, Germany. His research interests include
cloud security, data privacy and cloud computing.

Ludwig Seitz received his Ph.D.in Computer Sci-
ence from the National Institute of Applied Sciences
(INSA) of Lyon, France in 2005. He is currently a
researcher at Swedish Institute of Computer Sci-
ence (RISE SICS). He is heavily involved in stand-
ardisation, previously at OASIS (XACML standard)
and currently at the IETF (working groups ACE and
CoRE). His research interests include access con-
trol, information and usable security, and privacy.

Iraklis Paraskakis holds a PhD in IT and Educa-
tion from the Open University (UK). He is currently
a Senior Lecturer in the Department of Computer
Science at CITY College, Greece. He is also a Sen-
ior Research Officer at SEERC, and is coordinating
the Information & Knowledge Management Re-
search Group. His research interests include Cloud
computing, Governance and Quality Control, Ser-
vice Oriented Computing, and information systems.

Gregoris Mentzas is a Professor at the School of
Electrical and Computer Engineering and Director
of the Information Management Unit (IMU). He
serves as Director of the division of Industrial Elec-
tric Devices and Decision Systems. He holds a
Ph.D. in Operations Research and Information
Systems from NTUA in 1988. Prof. Mentzas has
coordinated or participated in more than 40 inter-

national projects and is an Associate Editor in five scientific journals
and was Program Committee member in more than 55 international
conferences.

