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Abstract— It is generally conceded that, due to security and privacy concerns, enterprises and users are reluctant to embrace 

the cloud computing paradigm and hence benefit from the cost reductions and the increased flexibility or business agility that this 

paradigm brings about. These concerns stem mainly from the significantly-expanded attack surfaces that result from the 

heterogeneous nature of cloud services and the dynamicity inherent in cloud environments. In order to alleviate these concerns, 

effective and flexible access control approaches are required to consider the contextual parameters that characterise data access 

requests in the cloud. In this respect, this work presents PaaSword: a novel holistic access control framework—essentially a PaaS 

offering—that extends the popular XACML standard with semantic reasoning capabilities that support the federation of effective 

context-aware access control policies and their infusion into cloud applications with minimal manual intervention and effort. To 

determine the performance of our solution, a comparative evaluation test is presented and discussed, against a well-known 

reference implementation of the XACML standard, namely the open source WSO2 Balana engine. 

Index Terms— access control, cloud computing, context-aware policy enforcement 

——————————   ◆   —————————— 

1 INTRODUCTION

y enabling ubiquitous access to shared pools of distrib-
uted and configurable resources, cloud computing rep-

resents a significant shift from the traditional client/server 
paradigm towards service-based architectures that offer 
theoretically boundless scalability and a flexible pay-per-
use model [1]. Evidently, such a shift brings about signifi-
cant advantages for users and enterprises in terms of cost, 
flexibility and business agility. In particular, it greatly fa-
cilitates small and medium enterprises (SMEs) in dealing 
efficiently and effectively with the data storage and pro-
cessing challenges that they may be facing.  

Nevertheless, despite the compelling benefits, the majority 
of enterprises are still to cross Moore’s chasm [2] with respect 
to cloud adoption. More specifically, less than 20% of enter-
prise applications run in the cloud, with 29% of the enter-
prises reporting security concerns such as data breaches, in-
sufficient access management, insecure APIs and account hi-
jacking [3] as significant averting factors for migrating their 
data and operations to the cloud [4]. Furthermore, these con-
cerns are fuelled by a series of recent security attacks that 
gained increased publicity, such as the iCloud hack that 
leaked hundreds of personal photos of celebrities [5], or the 
ADP breach that exposed payroll and tax data of nearly 
640,000 companies in the US [6]. Moreover, governmental leg-
islations regarding data privacy and data location, such as the 

EU’s General Data Protection Regulation [7], present an addi-
tional source of concern for enterprises which are now faced 
with severe legal and financial consequences if data confiden-
tiality is breached, or if cloud providers move regulated data 
across national borders [8]. 

Clearly, these concerns must be alleviated if enterprises 
and users are to embrace the cloud paradigm and benefit 
from the manifold advantages that it brings about. This can 
only be achieved if appropriate security policies are infused 
into cloud applications in order to restrict access to sensitive 
data [9]. Nevertheless, in an inherently dynamic cloud world 
where data persist over distributed and ubiquitously accessi-
ble computing resources, these policies, if they are to be effec-
tive, must be able to take into account the varying contextual 
circumstances surrounding data access requests and affecting 
their permissibility. This calls for context-aware access control 
policies, i.e. policies capable of tying the permission, or denial, 
of an access request to a plethora of heterogeneous attributes 
that synthesise the situation, or context, of one or more entities 
deemed relevant to the request—e.g. the subject or object of 
the request, or even the request itself [10], [11].  

The burden of defining and implementing such sophisti-
cated access control policies typically falls on application de-
velopers, raising concerns about the degree to which these 
policies sufficiently and adequately address the entire gamut 
of contextual attributes that need to be considered for protect-
ing the sensitive data. In this regard, we argue that a promis-
ing approach to alleviating the security concerns associated 
with the adoption of cloud computing is to offload part of this 
burden from the application developers. To this end, this 
work proposes PaaSword: an innovative security-by-design 
framework, essentially a PaaS offering, for facilitating devel-
opers in infusing appropriate context-aware access control 
policies into cloud applications. More specifically, PaaSword 
constitutes a holistic framework based on the popular 
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XACML standard [12] that provides: i) the necessary toolset 
for facilitating developers in defining context-aware access 
control policies that are specifically tailored to the particular 
needs of their cloud applications; these policies take the form 
of code-level Data Access Object (DAO) annotations; and ii) a 
middleware for interpreting, monitoring and enforcing these 
annotations dynamically, during application runtime, as well 
as for governing them. 

One of the main strengths of the PaaSword framework is 
that it is underpinned by a generic representation of policies, 
one that uses an ontological template for capturing the vari-
ous concepts, and their interrelations, that are involved in the 
definition of a policy; this template is malleable in the sense 
that it can be suitably extended with concepts and relations 
that reflect the particular needs of the underlying domain of 
application. In this respect, PaaSword promotes a clear sepa-
ration of concerns by unravelling the representation of poli-
cies from the actual code employed for enforcing them, whilst 
accurately capturing the knowledge that lurks behind poli-
cies. This brings about the following seminal advantage. It en-
ables—by virtue of semantic inferencing—the generation of 
new knowledge on the basis of the knowledge already en-
coded in the policies. Therefore, it can successfully tackle sit-
uations in which the contextual information piggybacked on 
an access request does not necessarily match, at the syntactic 
level, the corresponding information encoded in the policies. 
For example, if a policy states that a sensitive data object (say 
o) is only readable by requests that originate from within the 
EU, then a request that originates from a location in, say, Bel-
gium will be permitted to read o, as semantic inferencing al-
lows the generation of the (new) knowledge that the request 
indeed originates from within the EU. In this regard, the 
PaaSword framework allows for the definition of interopera-
ble policies i.e. polices enforceable across the diverse admin-
istrative domains that a cloud environment may span. More-
over, through the incorporation of a suitable production sys-
tem, PaaSword is able to monitor and enforce the correspond-
ing policies, hence perform the aforementioned semantic in-
ferencing, with an acceptable performance penalty.  

In addition, the generic policy representation underpin-
ning the PaaSword framework offers one more important ad-
vantage. It lends itself to a series of automated checks regard-
ing: (i) the well-formedness of policies, i.e. whether policies 
include all the (contextual) information required for granting, 
or denying, access to sensitive data; (ii) the disclosure of any 
inter-policy relations such as subsumption and contradiction. 
In this respect, this representation paves the way for the con-
struction of a generic mechanism for policy governance, one 
that enables the organisations adopting the PaaSword frame-
work to create and manage their security policies according 
to predefined rules and regulations. This is of utmost im-
portance for it increases our assurance on the effectiveness of 
the policies. The implementation details of such a governance 
mechanism are, however, beyond the scope of this paper. 

The rest of this paper is structured as follows. Section 2 pre-
sents an overview of the PaaSword framework and outlines 
the generic policy representation that underpins it. Section 3 
presents the policy enforcement middleware that implements 
PaaSword’s context-aware access control scheme. Section 4 

presents the annotation interpretation mechanism and Sec-
tion 5 discusses the main aspects of the policy enforcement 
business logic. Section 6 provides a comparative evaluation of 
the PaaSword framework against a widely-adopted imple-
mentation of the XACML standard. Finally, Section 7 briefly 
discusses related work and Section 8 concludes the paper and 
outlines future work. 

2 THE PAASWORD FRAMEWORK 

This section presents an overview of the PaaSword frame-

work (Section 2.1) and outlines the ontological template 

upon which it is founded (Section 2.2). In particular, with 

respect to the ontological template, an outline of the Con-

text-aware Security Model that articulates the various con-

cepts underpinning the template is provided. 

 
2.1 A Security-by-Design Framework 

The PaaSword framework addresses the semi-honest ad-
versarial model discussed in [13] whereby a malicious 
cloud provider is assumed to correctly follow the specifi-
cation of an underlying protocol whilst, at the same time, 
is able to intercept messages in order to disclose sensitive 
data [14], [15]. The framework offers, as a service, the fol-
lowing security-related features:  

i. Transparent key usage for efficient authentication 
of the subject of an incoming access request. 

ii. Annotation capabilities at the level of DAOs in the 
form of an IDE plugin that guide developers into 
the process of articulating all those access control 
policies that are required for protecting their sen-
sitive data in the cloud. 

iii. Dynamic interpretation of the DAO annotations 
into policy enforcement rules.  

iv. Governance and quality control of the annotations 
and the respective policies that they implement. 

v. Formulation and implementation of the overall 
policy enforcement business logic.  

This work focuses on aspects ii., iii. and v. above which are 
inextricably linked to the implementation of PaaSword’s ac-
cess control scheme. As discussed in Section 1, this scheme 
must enable the expression of context-aware access control poli-
cies and it is hence based on the Attribute-based Access Con-
trol (ABAC) model—a model capable of taking into account 
all those attributes that synthesise the context of one or more 
entities that are deemed relevant to an access request [16]. 
Nevertheless, this model presents a crucial limitation: it lacks 
the means of addressing any form of interrelation between the 
considered attributes (e.g. whether the possession of one at-
tribute by an entity also implies the possession of another). It 
therefore precludes any kind of semantic inferencing during the 
evaluation of an access request on the basis of the information 
encoded in these attributes. This means that the contextual in-
formation piggybacked on an access request must necessarily 
match, at the syntactic level, the corresponding information 
encoded in the policies. Naturally, this creates the burden of 
having to define fine-grained access control policies that 
cover the potentially different contexts that may be attached 
to the entities that are related to a request. For example, a pol-
icy stating that a sensitive data object (say o) is only readable 
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by requests that originate from within the EU is insufficient, 
by itself, for deciding whether a request originating from a lo-
cation in, say, Belgium should be permitted or denied: a sec-
ond, finer-grained policy that states that requests originating 
from a location in Belgium are permitted to read o, is re-
quired. Moreover, the interpretation of contextual attributes 
at a purely syntactic level impedes the federation of access 
control across different actors who are likely to use different 
attribute vocabularies; interoperability thus depends on ad-
hoc mechanisms for translating attributes across different 
actor domains, a process that is resource- and time-con-
suming, as well as error-prone, in practice. 

In contrast, the access control scheme offered by the 
PaaSword framework extends the ABAC model with the abil-
ity of fusing semantic knowledge into the process of deciding 
whether to permit, or deny, a request. This allows the gener-
ation of new knowledge through semantic inferencing on the 
information residing in the contextual attributes that pertain 
to a request—e.g. in the example above, the knowledge that 
the request indeed originates from within the EU. This ab-
solves application developers from the burden of defining 
fine-grained access control policies such as the one in the ex-
ample above.   

2.2 Extending ABAC with a Context-aware Policy 
Model 

The PaaSword framework extends the ABAC model 
through the introduction of a generic Policy Model, one that 
adheres to the popular XACML standard [12] and views 
ABAC policies as finite, non-empty, sets of ABAC rules. A 
rule is the most elementary structural element and the 
basic building block of policies. It is abstractly described in 
terms of the ontological template depicted in Table 1. This 
template comprises the following concepts: i) actor iden-
tifies the subject requesting access to perform an operation 
on a sensitive object; note that an instantiated ABAC rule 
can involve the any_actor instance for describing rules 
that do not target any specific actor; ii) context expres-
sion identifies the environmental conditions that must 
hold in order to permit, or deny, the performance of an op-
eration on a sensitive object; iii) authorisation deter-
mines the type of authorisation (positive i.e. ‘permit’, or 
negative i.e. ‘deny’) that is granted; iv) action identifies 
the operation that may, or may not, be performed on the 
protected sensitive object; and v) controlled object 
identifies the sensitive object on which access is requested. 

The ontological template of Table 1 is underpinned by 

an extensible Context-aware Security Model (hereafter re-

ferred to as Context Model for simplicity) that captures—in 

terms of ontological classes and properties—the various 

concepts, and their interrelations, involved in the defini-

tion of a policy. These concepts may involve any kind of 

contextual information that is machine-parsable [11] and 

pertains to an access request; for example, they may in-

clude the network and physical location of the subject that 

issues an access request, the type of device that is used for 

issuing the request, as well as the position (or role) that this 

subject occupies in a company.  

The Context Model (CM) incorporates various facets in-

cluding: i) the Subject class that incorporates concepts for 

describing the entity requesting access (e.g. whether it is a 

person, a software agent, an organisation, a group, etc.), as 

well as any other entity that is deemed relevant to an access 

request. Note that the concept actor of the ontological 

template of Table 1 draws its instances from this class; ii) 

the Object class that incorporates concepts for describing 

the (sensitive) object on which access is requested (e.g. 

whether it is a relational or non-relational data object, a file, 

etc.). Note that the concept controlled object of the 

ontological template of Table 1 draws its instances from 

this class; iii) the Security Context Element class that incor-

porates concepts for describing the context of an entity rel-

evant to a data access request such as location, date and 

time, type of connectivity, etc. Note that the concept con-

text expression of the ontological template of Table 1 

interrelates instances from this class with instances from 

the classes Subject and Object above; and iv) the Permission 

class that incorporates concepts for describing the seman-

tics of the type of access sought (e.g. read-only access, 

read/write access, etc.) on the sensitive data. Note that the 

concept action of the ontological template of Table 1 

draws its instances from this class. A more elaborate ac-

count of the aspects of the CM can be found in [17], [18]. 

The use of such an ontological template for describing 
ABAC rules, hence ABAC policies, essentially disentangles 
the definition of a policy from the actual code employed 
for enforcing it. This brings about the following seminal 
advantages: (i) it allows the performance of semantic infer-
encing, hence the generation of new knowledge, on the ba-
sis of the information already encoded in existing policies; 
(ii) it achieves a clear decoupling between the policy deci-
sion and policy enforcement points (PDP and PEP respec-
tively), a decoupling essential for generating dynamically, 
during application runtime, fresh access control policies 
that capture the new knowledge generated through se-
mantic inferencing; (iii) it forms an adequate basis for rea-
soning generically about the well-formedness of the secu-
rity policies, i.e. whether they include all the information 
required for granting, or denying, access to sensitive data, 
as well as about inter-policy relations such as subsumption 
and contradiction; (iv) it facilitates the overall governance 
of policies. For more information on the Policy Model, the 
interested reader is referred to [9], [17], [18]. 

3 POLICY ENFORCEMENT MIDDLEWARE 

This section presents an overview of the policy enforce-
ment middleware that implements PaaSword’s context-
aware access control scheme. Fig. 1 depicts the main com-
ponents of this middleware which are detailed below. 

The CM Editor enables the relevant stakeholders (e.g. 

TABLE 1 
ABAC RULE TEMPLATE 

[actor] has [authorisation] for [action] on [con-
trolled object] when [context expression] 
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DevOps, product manager, cloud application developer) 
to customise the CM such that it adequately supports the 
expression of policies in the underlying domain of appli-
cation. The role/position of the stakeholder depends, each 
time, on the hierarchical structure advocated by the organ-
isation adopting the PaaSword solution, as well as on the 
particular rights and obligations that have been assigned 
to the various roles/positions that comprise this hierarchy. 
This entails the population of the model’s classes with ap-
propriate instances, as well as the potential addition of 
new classes and/or properties—these are intended to cap-
ture any aspects of the underlying domain of application 
that must be taken into account by the policies and which 
have not been included in the generic version of the CM 
offered by the PaaSword framework. 

The Access Policy Editor enables the relevant stakehold-
ers to create new, or modify existing, context-aware access 
control rules and hence policies. The newly-created or 
modified rules abide by the ontological template of Table 
1 and are founded upon an instantiated version of the CM, 
one that has been created through the use of the CM Editor. 

The Annotations Governance Mechanism enables the gov-
ernance of the code-level annotations that express access 
control policies. Such governance entails automated 
checks regarding: (i) the well-formedness of the newly-cre-
ated or modified policies, i.e. whether they include all the 
(contextual) information required for granting, or denying, 
access to sensitive data; (ii) the disclosure of any inter-pol-
icy relations such as the subsumption, or contradiction, of 
the newly-created or modified policies with other existing 
policies. In addition, it entails the imposition of potential 
restrictions on the entities that are allowed to create and/or 
modify policies (e.g. DevOps, product manager, cloud ap-
plication developer), as well as on the (contextual) circum-
stances under which such activities may take place. The 

 

1 In case two or more rules are applicable, conflict resolution is per-
formed on the basis of XACML’s combining algorithms [2] in order to dis-
cern a single ultimately applicable policy rule. 

details of the implementation of this mechanism are be-
yond the scope of this paper. 

The PaaSword IDE Plugin enables the cloud application 
developer to insert code-level annotations that express ac-
cess control policies through the use of Eclipse’s popular 
web-integrated environment. 

The Access Policy Enforcement Mechanism (also referred 
to as semantic authorisation engine) implements the policy 
enforcement business logic according to the XACML archi-
tecture, as well as the processing model for evaluating ac-
cess requests. It involves two main components: 
• A Production System for monitoring and evaluating the 

access control policies in an efficient manner. This sys-
tem comprises the following three primary elements: 
the production memory, which contains a set of access 
control policy rules; the working memory, which 
stores data representing facts and assertions about the 
contextual attributes encoded in access control policy 
rules; the inference engine, which discerns and exe-
cutes the policy rule applicable to a particular access 
request1. It is worth noting here that the production 
system employed by the reference implementation of 
the PaaSword framework is built around the Drools2 
Business Rule Management System due to its perfor-
mance capabilities; 

• The ContextModel2ExpertSystemRules parser which is 
responsible for infusing inferencing capabilities into 
the production system. More specifically, it translates 
the semantic knowledge captured in the CM into rules 
that are subsequently fed into the production system’s 
memory. 

The Facts Mechanism feeds the working memory of the Pro-
duction System with real-world facts, i.e. with the values 
currently assumed by the contextual attributes encoded in 
an access control policy. Clearly, these values are essential 

2 http://www.drools.org/ 

 

Fig. 1. Policy Design & Enforcement Related Components 



VERGINADIS ET AL.:  CONTEXT-AWARE POLICY ENFORCEMENT FOR PAAS-ENABLED ACCESS CONTROL 5 

 

for the evaluation of the policy; they are retrieved dynam-
ically, during application runtime, by invoking a number 
of appropriate handlers (see Section 4.2 for more details). 

The Annotation Interpretation Mechanism undertakes the 
task of interpreting the code-level policy annotations into 
XACML-based enforceable policies. It comprises two main 
components: 
• The AttributesLookUp component which is responsible 

for informing the Facts Mechanism of which particular 
attribute values it should retrieve; 

• The PolicyModelBootstrapping component which is re-
sponsible for the actual translation of the code-level 
policy annotations into rules expressed in the jargon of 
the production system. 

Fig. 1 provides a high-level description of the execution 
flow of the aforementioned middleware components, un-
veiling their use as well as their interactions. For the re-
maining of this section we describe the main steps of this 
flow. These steps are clustered according to the main exe-
cution phases of a PaaSword-enabled cloud application, 
namely pre-bootstrapping, bootstrapping and runtime. 

The Pre-bootstrapping phase involves the following steps: 
i) through the use of the Context Model Editor, the CM is 
updated, instantiated, serialised in an appropriate format 
and persisted (see Fig.1, step 1); ii) knowledge is extracted 
from the Context Model and expressed in the form of Pro-
duction Memory rules (see Fig.1, step 2); iii) a set of appro-
priate access control policies is created by instantiating the 
PaaSword Policy Model (see Fig.1, step 3) and subse-
quently validated and persisted (see Fig.1, step 4) in an ap-
propriate serialised format; iv) the PaaSword annotations 
that implement these policies are inserted into the cloud 
application code (see Fig.1, step 5); and v) suitable handlers 
are created and associated with the appropriate classes of 
the CM. More specifically, each handler (e.g. geolocation) 
is associated with the particular class of the CM (e.g. loca-
tion) that represents the attribute for which the handler 
will provide measurements. 

The Bootstrapping phase involves the following steps: i) 
access policies are fed into the Annotation Interpretation 
Mechanism and translated into Production System rules 
(see Fig.1, step 6); and ii) appropriate handlers are then se-
lected for providing the necessary data for evaluating the 
contextual attributes encoded in the policies. 

The Run-time phase involves the following steps: i) an in-
coming access request is intercepted (see Fig.1, step 7) cap-
tured as a triple (s, op, r) that corresponds to a subject 
(s) that requires to perform an operation (op) on a certain 
protected resource (r); ii) the request is fed into the Anno-
tation Interpretation Mechanism where the contextual in-
formation encoded in the request is extracted (see Fig.1, 
step 8); iii) the access control attributes whose values need 
to be resolved are recognised on the basis of the applicable 
access control policies3 and the corresponding handlers are 
queried (see Fig.1, step 9); iv) the values provided by the 
handlers are aggregated, semantically uplifted on the basis 
of the knowledge captured in the CM (see Fig.1, step 10), 
and ultimately uploaded to the working memory of the 
 

3 An access control policy is deemed applicable if it is designated to pro-
tect the controlled object targeted by the access request. 

production system (see Fig.1, step 11); and v) the relevant 
access control policies are evaluated and the access control 
decision is issued (see Fig.1, step 12). Note that a descrip-
tion of the steps ensuing a successful, or not, access request 
are beyond the scope of this paper. 

4 ANNOTATION INTERPTETATION  

4.1 Annotations 

Two distinct kinds of annotation are discerned:  
@PaaSwordPEP and @PaaSwordEntity. @PaaSwordPEP an-
notations are the vehicle through which access control pol-
icies are infused into the code of cloud applications. In par-
ticular, these annotations decorate the DAO-implementing 
Java classes and methods of a cloud application with the 
rules, policies and policy sets defined through the Access 
Policy Editor (see Section 3). Thus, when an access request 
is received during application runtime, the PaaSword 
framework evaluates these rules, policies and policy sets 
and invokes the corresponding DAO only if a permit deci-
sion is resolved. This evaluation is performed against the 
attribute values that are piggybacked on the access request. 
The definition of a @PaaSwordPEP annotation that associ-
ates a DAO with a policy set, policy or rule is provided in 
Table 2. 

@PaaSwordEntity annotations are, on the other hand, 
used at the class-level in order to distinguish those classes 
that are handled as PaaSword entities, i.e. as containers of 

code that feed data to an underlying database during ap-
plication bootstrapping time. This database may be frag-
mented and distributed over a number of different physi-
cal servers for privacy reasons. This gives rise to yet a third 
kind of annotations, namely the @PaaSwordDDE annota-
tions which are responsible for specifying the manner in 
which sensitive data are fragmented and persisted over 
different physical servers. @PaaSwordDDE annotations 
shall not further concern us here. 

4.2 Security Model Editors 

1) CM Editor 
As mentioned in Section 3, the CM Editor enables relevant 
stakeholders (e.g. DevOps, product manager, cloud appli-
cation developer) to suitably instantiate and customise the 
CM in order to support the expression of access control 
policies in the underlying domain of an application. Recall 

TABLE 2 
@PAASWORDPEP ANNOTATION 

@Retention(RetentionPolicy.RUNTIME) 

@Documented 

public @interface PaaSwordPEP { 

    String value() default ''; 

    Type type() default Type.POLICY; 

    public enum Type { 

        RULE, POLICY, POLICY_SET 

    } 

} 
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from Section 2.2 that the CM constitutes the semantic back-
ground against which access control policies are defined. 
It provides the underlying ontological infrastructure, i.e. 
the concepts, properties and instances in terms of which 
the attributes of a policy are specified. For example, con-
sider an ABAC policy that protects a particular data object 
by enumerating the locations from which this object is ac-
cessible. Such a policy hinges upon a location attribute and 
thus requires the introduction in the CM of a correspond-
ing Location concept along with its relevant properties 
and instances.  

In addition, the CM Editor allows the association of CM 
concepts, hence of policy attributes, with appropriate han-
dlers. A handler is essentially a software routine that pro-
vides real-time measurements of the current value of an at-
tribute. For instance, in the case of the Location attribute, 
one or more handlers must be specified for providing the 
whereabouts of a subject that issues an access request to a 
particular data object. 
2) Access Policy Editor 

Once the semantic background is reified, the Access Pol-
icy Editor assists relevant stakeholders in creating and/or 
modifying access control policies in a controlled and rule-
based manner. In particular, the Access Policy Editor takes 
into account a set of constraints that define the admissible 
structure of a policy. These constraints form essentially a 
set of meta-policies that articulate the ‘ingredients’ of an 
access control policy, i.e. all those attributes along with 
their allowable values or value ranges, that a policy must, 
may or must not articulate4. Based on these constraints, the 
Access Policy Editor exposes a suitable GUI that guides a 
user through the process of creating or updating a policy 
by providing, at each juncture of this process, the allowa-
ble values that may be selected. In this respect, the Access 
Policy Editor advocates a type-safe approach to policy crea-
tion and modification (depicted in Fig. 2 as a typeSafety 
interface). Table 3 summarises the main functionalities of 

 

4 These constraints are represented ontologically. The manner in which 
these constraints are formulated and represented shall not concern us here. 

the Access Policy Editor, along with the particular subcom-
ponents that are responsible for delivering these function-
alities. These subcomponents are depicted in the UML 
component diagram of Fig. 2.  

In addition, the Access Policy Editor comprises the Pol-
icyModelBootstrapping Parser, a subcomponent responsible 
for converting the newly-created or updated policies from 
the JSON serialisation in which they are persisted in the 
Policy Sets database (see Table 3), to equivalent RDF/TTL 
and XACML serialisations; these are then exported to the 
PaaSword Models triple store5 and to the Policy Admin-
istration Point (PAP) [12] respectively. The former seriali-
sation is suitable for validating the policies against the con-
straints regarding the admissible structure of a policy, 
whereas the latter is suitable for deploying and managing 
the policies during application runtime. Table 4 presents 
an example of a policy expressed in RDF/TTL whereby a 

5 The Apache Jena Fuseki (https://jena.apache.org/documenta-
tion/fuseki2/) triple store is used in particular. 

 

Fig. 2. Access Policy Editor 
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TABLE 3 

Access Policy Editor Operations 

Functionality 
Responsible 

subcomponent 

Facilitates a user in creating a new, or modify-

ing an existing, context expression (see Section 

2.2). 

Expression Edi-

tor  

Facilitates a user in creating a new, or modify-

ing an existing, policy rule by providing its 

identifier, controlled object, action, actor, con-

text expression and, of course, decision. 

Rule Editor  

Facilitates a user in creating a new, or modify-

ing an existing, policy by providing its identi-

fier, as well as its pertinent rules and combin-

ing algorithm. 

Policy Editor  

Facilitates a user in creating a new, or modify-

ing an existing, policy set by providing its iden-

tifier, as well as its pertinent policies and com-

bining algorithm. The resulting policy set is se-

rialized in JSON and persisted in the Policy Set 

relational database subcomponent. 

Policy Set Editor  

 

 

 

 

 

 

 

 

Fig. 3. Annotation Interpretation Mechanism 
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subject acting in the capacity of the role ‘Guard’ can gain 
‘write’ access to the resource CarPark.LogEntry only 
during working days and hours (this condition is defined 
in terms of the context expression ex:IN_Work-

HoursAndDays).  
The PolicyModelBootstrapping Parser is also burdened 

with the task of discerning the set of attributes that a 
newly-created or updated policy comprises and storing 
them in a hash map along with the controlled object that 
these attributes are designated to protect. More specifi-
cally, each pair in the hash map comprises the URI of a con-
trolled object that is protected by a policy, as well as a list 
of ontological classes from the CM that represent the attrib-
utes of the policy (stored in the Hash Map Repository as 
depicted in Fig.2). These are effectively the attributes that 
need to be evaluated each time an access request that tar-
gets the particular controlled object is received6. An exam-
ple hash map is provided in Table 5; it associates a specific 
data object—the controlled object CarPark.LogEntry—
with a number of classes from the CM, namely the classes 
Subject, DateTimeInterval, Physical Location 
that need to be evaluated each time an access request that 
targets CarPark.LogEntry is received. This evaluation 
need is acquired by querying the Hash Map Repository 
usined the the queryHashMap interface as depicted in Fig.2. 

 

6 Clearly, upon receipt of an access request, the attributes that need to be 
evaluated in order to decide whether to permit, or deny, the request must 
be quickly determined; this justifies our choice of storing these attributes 

4.3 Annotation Interpretation Mechanism 

The ultimate goal of the Annotation Interpretation mecha-
nism is to transform @PaaSwordPEP annotations into 
XACML-based enforceable access control policies. More 
specifically, this mechanism offers the following function-
alities. i) It introspects the source code of a PaaSword-ena-
bled application and determines whether it contains valid 
@PaaSwordPEP annotations; this functionality is offered by 
the Introspection Engine subcomponent depicted in Fig. 3. 
ii) It interprets @PaaSwordPEP annotations into appropri-
ate inference engine rules and persists them in the Produc-
tion Memory of the Production System; this functionality 
is offered by the PolicyModelBootstrapping Parser compo-
nent7 (see Fig. 3). iii) It parses the inference engine rules in 
the Production System and discerns all those contextual at-
tributes which must be evaluated on the receipt of an ac-
cess request in order to decide upon its permissibility; this 
functionality is offered by the AttributesLookUp subcompo-
nent (see Fig. 3). iv) It feeds the Working Memory of the 
Production System with facts, i.e. with the current values 
of all those contextual attributes discerned by the Attrib-
utesLookUp subcomponent; this functionality is offered by 
the Facts Mechanism subcomponent (see Fig. 3).  

We next provide brief accounts of the four subcompo-
nents that offer these functionalities. 
1) Introspection Engine 

Performs a series of correctness checks that aim at de-
termining the logical validity of @PaaSwordPEP annotations. 
By ‘logical validity’ we refer here to certain characteristics 
of an annotation such as, for example, the uniqueness of 
the application name appearing in an annotation, or 
whether an annotation decorates a REST or web end point 
method. Logical validation takes place through introspec-
tion at the Bytecode level. Note here that the structural va-
lidity of an annotation is not checked for if an application 
compiles correctly, structural validity is assured from the 
outset.   
2) PolicyModelBootstrapping Parser  

As depicted in Fig.4, upon the creation or update of an 
access control policy, this parser undertakes the task of 
translating the relevant rules in RDF triples for validation 
purposes. Once validated, it parses the arguments of each 
@PaaSwordPEP annotation in order to guarantee that this 
policy is used on a certain application and translates it into 
rules expressed in the Drools jargon. In parallel, it exports 
them using XACML notation and creates hash maps for 
fast retrieval of the necessary context attribute values, once 
a request is intercepted at run-time. More specifically, this 
parser retrieves from the PaaSword Model triple store the 
RDF/TTL-serialisation of each rule, policy or policy set 
that is referenced from within a @PaaSwordPEP annotation 
(e.g. PaaSwordPEP (Type.Policy, “policy1”)) and trans-
lates it into one or more inference-engine production rules.  
3) AttributesLookUp  

Identifies all those attributes that need to be evaluated 
in order to determine whether an access request to a par-
ticular controlled object can be granted. More specifically, 

in a hash map indexed by the identifiers of the controlled objects. 
7 Note that this is the same component as the one encountered in the 

Access Policy Editor mechanism. 

TABLE 4 
SAMPLE POLICY RULE IN RDF/TTL 

# Definition of Policy Rule: Rule_1 

ex:Rule_1   a  pac:ABACRule ; 

  dcterms:identifier '3'^^xsd:string ; 

  rdfs:label 'Rule_1'^^xsd:string ; 

  pac:hasControlledObject    

   'eu.paasword.examples.CarPark.LogEntry'; 

  pac:hasAuthorisation  pac:permit ; 

  pac:hasAction  ex:Write ; 

  pac:hasActor  ex:Guard ; 

  pac:hasContextExpression  

   ex:IN_WorkHoursAndDays . 

# Definition of Context Expression: IN_Work-

ing_Hours_and_Days 

ex:IN_Working_Hours_and_Days  a  

  pac:ANDContextExpression ; 

  pac:hasParameter  ex:IN_Working_Hours ; 

  pac:hasParameter  ex:IN_Working_Days ; 

  dcterms:identifier '4'^^xsd:string ; 

  rdfs:label    

   'IN_Working_Hours_and_Days'^^xsd:string . 

 

 

TABLE 5 
EXAMPLE HASH MAP 

eu.paasword.examples.CarPark.LogEntry \ 

http\://www.paasword-project.eu/ontologies/ 

casm/2016/05/20#DateTimeInterval\ 

http\://www.paasword-project.eu/ontologies/ 

casm/2016/05/20#Subject\ 

   http\://www.paasword-project.eu/ontologies/ 

   casm/2016/05/20#PhysicalLocation 
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it intercepts all incoming access requests and determines, 
for each one of them, the id of the controlled object that it 
targets. It then uses this id as a search term in order to look 
up into the Hash Map repository all those ontological clas-
ses from the CM that represent attributes designated to 
protect that controlled object. Finally, it invokes the Facts 
Mechanism and passes to it these URIs as arguments. 
4) Facts Mechanism 

Retrieves the current values of all attributes whose URIs 
have been received from the AttributesLookUp compo-
nent. These values are derived from a variety of sources 
including, for example, sensors, cell phones, relevant data-
bases and even the request itself. In order to effectively 
handle input from such diverse sources, the Facts Mecha-
nism employs a set of handlers—i.e. software routines that 
federate the raw data produced by these sources and ex-
tract the required attribute values. Note that each CM class 
that represents an attribute is associated with at least one 
handler. The Facts Mechanism also employs a set of adapt-
ers that semantically uplift the attribute values emitted by 
the handlers by constructing appropriate instances in the 
corresponding CM classes. For example, a handler might 
emit the current location of an entity involved in an access 
control rule in the form of latitude and longitude while an 
adapter might perform reverse geocoding for inferring the 
relevant city or country. This information takes the form of 
an instance of the CM class Location. Finally, the Facts 
Mechanism populates the working memory of the Produc-
tion System and triggers the PaaSword Policy Enforcement 
Mechanism which is responsible for evaluating access re-
quests (see Section 5). 

5 POLICY ENFORCEMENT 

5.1 Policy Enforcement Business Logic & 
Implementation 

The PaaSword Policy Enforcement mechanism is responsi-
ble for evaluating access requests against existing policy 

sets and deciding whether to permit, or deny, these re-
quests. The basic component that materialises the policy 
enforcement business logic is the Semantic Authorization 
Engine (see Fig. 5)—a dedicated Production System that 
comprises, at its very core, an Inference Engine that 
matches real-world facts against production rules in order 
to decide whether to permit, or deny, access requests. As 
described in Section 4.3, the facts are produced by the Facts 
Mechanism and the various handlers that it employs, 
whereas the production rules are generated by the Policy-
ModelBootstrapping Parser which translates RDF/TTL-
expressed rules, policies and policy sets from the 
PaaSword Models triple store into production rules.  

As depicted in Table 6, a production rule is a two-part 
structure comprising an antecedent that articulates all 
those conditions that must be satisfied in order for the rule 
to be applicable, and a consequent that specifies the actions 
that are to be performed if these conditions are indeed sat-
isfied—in our case these actions amount to the permission 
or denial of an access request. The rules are stored in the 
Production Memory component (see Fig. 5) whereas the 
facts reside in the Working Memory. 

Two are the main methods of rule execution in a pro-
duction system: backward chaining and forward chaining [19]. 

 

Fig. 4. PolicyModelBootstrapping Parser Workflow 

 
 
 

 

 

 

 

 

Fig. 5. Policy Enforcement Mechanism 
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TABLE 6 
PRODUCTION RULE 

When <conditions> then <actions> 
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The former implements a form of reverse engineering: it 
starts off with a particular conclusion (e.g. ‘permit access’) 
and reasons about the legitimacy of this conclusion on the 
basis of a ruleset that resides in the Production Memory. 
Such reasoning is useful when the goal is to identify, for 
example, all those conditions that must be fulfilled in order 
for a particular controlled object to be accessible.  

The latter implements a form of deductive reasoning: it 
starts off with a particular scenario, e.g. with certain facts 
about the real world, and works its way through a given 
ruleset, attempting to generate inferences on the basis of 
the applicable rules; these inferences ultimately provide a 
conclusion. It is therefore better-suited to our work: each 
time an access request is received, a decision (either permit 
or deny) needs to be deduced on the basis of a given ruleset 
and certain facts about the real world. In the current 
PaaSword implementation, the Drools engine is used as a 
forward chaining engine.  

5.2 Interaction with the Semantic Authorization 
Engine 

The component diagram in Fig. 5 and the workflow dia-
gram in Fig. 6, depict all the communication endpoints that 
the Semantic Authorization Engine uses in order to pro-
ceed with the rules triggering. The Semantic Authorization 
Engine makes use of the Annotations Interpretation Mech-
anism outlined in Section 4.3, in order to feed its produc-
tion memory with the appropriate rules. Specifically, dur-
ing engine bootstrapping, it parses all the policy rules and 
adds them to the corresponding knowledge base. Once a 
request is intercepted from a PaaSword-enabled applica-
tion, the Semantic Authorization Engine makes use of the 
Facts Mechanism, in order to create extra facts that enrich 
further the working memory, thus allowing the proper 
evaluation of all the related policy sets to an incoming ac-
cess request. For example, given the IP-address of a re-
quest, the Annotations Interpretation Mechanism returns 
the geographical area that the request comes from. When 
an access request to a protected resource is processed by 
the PaaSword framework, it is necessary to collect all rele-
vant information available, in order to evaluate the related 
policy rules using the most complete and up-to-date infor-
mation. This information may originate from various 

 

8 https://www.w3.org/TR/rdf-sparql-query/ 

sources, such as the access request itself, data acquired 
from sensors and external sources or knowledge extracted 
from primitive information. All of them are handled by the 
Facts Mechanism and they are used to prime the Working 
Memory of the Inference Engine, which performs the ac-
tual evaluation of policy rules. For efficiency reasons, it is 
important to keep the minimum amount of data in the 
Working Memory, during the rules evaluation process. 
Our approach involves the identification, upon an access 
request, of which rules should be eventually used, based 
on the resource that is to be accessed, and the deduction of 
all the relevant attributes in order to populate the Working 
Memory only with the necessary facts. 

5.3 Interaction with the Context Model 

An important task for successfully evaluating an incoming 
access request, without having to design fine-grained ac-
cess control rules, is the population of the Production 
Memory with knowledge extracted from the Context 
Model. In the PaaSword framework, the use of semantics 
allows for the implementation of coarse-grained access 
control rules, alleviating the design-time effort with re-
spect to coping with the burden of fine-tuning the attrib-
utes used in the rules and the attribute values acquired 
from the access request or from external sources. For ex-
ample, the PaaSword adopter may design rules that re-
strict access to sensitive data based on the requestor’s 
physical location defined at a country-level, while the 
available sources provide location information only at a 
city-level. PaaSword’s innovative solution introduces the 
handling of the necessary semantics in an efficient way. 
Specifically, PaaSword CM supports basic RDF reasoning 
which can be mapped to a set of rules through the dedi-
cated ContextModel2ExpertSystemRules Parser. This enables 
semantic reasoning within the Semantic Authorization En-
gine. The main goal concerns the efficiency in access con-
trol by keeping the valuable knowledge expressed seman-
tically without having to perform SPARQL8 queries at run-
time. Using the ContextModel2ExpertSystemRules Parser, we 
parse the knowledge of CM offline and generate rules that 
support, but not limited to: Property Transitivity; Sub-
property Transitivity; Supertype Inheritance; Class Transi-
tivity and Member Induction.  

For example (see Fig. 7) based on the CM the “Tablet”, 
”Smartphone” and ”Notebook” are subclasses of the class 
”Mobile” which is a subclass of the ”Device Type”. We 
consider for this example the: a) Supertype inheritance and 
b) Class Transitivity as it is presented in Table 7. During 
the Production Memory bootstrapping, the rules shown in 
Table 8 will be automatically added. All of them come di-
rectly from ContextModel2ExpertSystemRules Parser after 
parsing the CM itself. Based on this example, the platform 
intercepts an access request originating from the “Sam-
sungN7000” (i.e. initial fact) which is a smartphone (in-
stance of class Smartphone). After firing all the relevant 
rules that carry the knowledge of the CM into the expert 
system, two additional facts are inferred. First that the 
“SamsungN7000” is also a Mobile and second the “Sam-
sungN7000” is an instance of the class DevType. The 

 

Fig. 6. Semantic Authorization Engine Forward Chaining Workflow 
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added value of such an approach is that the administrator 
or the cloud application developer is not obliged to register 
a fine-grained access control rule at the level of sub-classes 
Smartphone, Notebook or Tablet depending on what 
is the expected value that will be acquired by the inter-
cepted access request. We also note that defining coarse-
grained access control rules becomes a necessity in cases 
that the intercepted contextual information is not known 
at design-time.  

In a similar way, ContextModel2ExpertSystemRules 
Parser handles the Combining Algorithms. The Combin-
ing Algorithms per policy or policy set are also trans-
formed into rules during knowledge base initialization. 
According to the XACML standard [12] there is a set of 
combining algorithms (e.g. Deny-overrides, Permit-over-
rides, First-applicable, etc.) that we support through this 
framework. For example the Deny-overrides combining al-
gorithm treats the decisions in such a way that if any rule 
outcome is “Deny”, then that decision prevails, although 
there might be “Permit” results as well. 

6 EVALUATION 

We have set up a comparative evaluation test in order to 
determine the performance of our solution, compared to a 
reference implementation of the XACML standard, namely 
the open source WSO2 Balana9 engine. For our initial eval-
uation test, we have created a single Policy Set comprising 
a single Policy with an increasing number of Rules and we 
have focused on measuring the policy evaluation time (i.e. 
execution time) and the RAM consumption. We have grad-
ually increased the number of Rules from 1 to 50000 in a 
single Policy. These rules were kept as simple as possible, 
essentially concluding at a single match clause that refered 
to the inferred current location of the subject of a test re-
quest. For the PaaSword experimental set up, this corre-
sponded to the use of a dedicated context handler (con-
cerning location). Furthermore, in order to approximate a 
realistic use of XACML, we have conducted the equivalent 
tests using the Balana engine, in which the PDP performs 
external retrieval of attributes from an SQL database, dy-
namically during evaluation. The typical case for such ex-
ternal retrieval would be a request carrying the subject-
identifier, and a policy requiring other subject attributes 

 

9 https://github.com/wso2/balana 

(e.g. that require a mapping between subject’s latitude and 
longitude to countries) for evaluation, that are not present 
in the request and that would have to be retrieved on the 
fly, based on the subject identifier. This setup of the Balana 
engine (called Balana++ for the purposes of our evalua-
tion) is the closest possible emulation of the context-aware 
functionality offered by the PaaSword solution. This eval-
uation took place on a private Openstack10 installation, us-
ing two identical virtual machines with 4VCPUs, 8GB 
RAM, 80GB Disk and operating system Ubuntu 16.04.3 
LTS. 

The measurements against the PaaSword Semantic Au-
thorization Engine were performed for a single Policy con-
taining n Rules. These Rules referred to a single Expression 
consisting of a single Condition requiring the Subject’s lo-
cation to be equal to a certain value. In order to eliminate 
variations in the execution time of a single request, the 
measurement script performed several iterations of the 
same requests and calculated the average mean. Since the 
PaaSword engine uses REST for both internal and external 
communication, a network transportation penalty was 
considered for the measurement of each request. Given 
that the Semantic Authorization Engine is not called di-
rectly but it is invoked by the PaaSword Controller which 
handles the policy enforcement points, especially smaller 
numbers of Rules are affected by the initial network trans-
portation overhead. The average round trip time was 
measured by calling a reference endpoint on the PaaSword 
Controller and added to the penalty. By design, the 
PaaSword Semantic Authorization Engine uses a handler 

10 https://www.openstack.org/ 

 

Fig. 7. Context Model Snapshot 

TABLE 7 
INFERENCE TYPES TO BE TRANSLATED 

Inference Type: Supertype inheritance 

Logical Formula: 

{?A rdfs:subClassOf ?B. ?S a ?A} => {?S a ?B}. 

Example:   

Smartphone rdfs:subClassOf  Mobile. 'Sam-

sungN7000' a Smartphone  

     => 'SamsungN7000' a Mobile 

Inference Type: Class Transitivity 

Logical Formula: 

{?B rdfs:subClassOf ?C. ?A rdfs:subClassOf ?B} 

=> {?A rdfs:subClassOf ?C}. 

Example:   

Smartphone rdfs:subClassOf  Mobile.  

Mobile rdfs:subClassOf  DeviceType  

    => Smartphone rdfs:subClassOf  DeviceType 

 

TABLE 8 
DROOLS RULES BASED ON RDFS REASONING 

rule 'SupertypeInheritanceSmartphone' 

 when 

  PCondElem(elemId='device' && value='Smartphone') 

 then 

  insertLogical(new PCondElem('device','Mobile')) 

 end 

rule 'ClassTransitivityMobile' 

 when 

  PCondElem(elemId='device' && value='Mobile')   

 then 

  insertLogical(new PCondElem('device','DevType')) 

 end 
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mechanism to resolve contextual information. These han-
dlers are implemented by external information services 
which introduce again a network transportation overhead 
including the service’s individual processing time. Their 
average duration was measured, multiplied by the total 
count of Rules within the scenario and again added to the 
penalty.  

The results shown in Fig. 8 take penalties of approxi-
mately 4ms per Rule for the handlers and 71ms for the 
communication between measurement script and 
PaaSword Controller into account. It becomes evident by 
this evaluation that PaaSword solution, due to its ad-
vanced context-aware capabilities, proved to be slower 
than the Balana engine-based solution. Moreover, both so-
lutions average execution times increase exponentially af-
ter the significant increase of deployed rules (>1000 rules). 
In Fig. 9, a similar trend can be reported for the memory 
consumed by each engine for evaluating the increasing 
number of rules. Especially, in the case of PaaSword such 
an exponential increase of the execution time can be ad-
dressed with certain optimisations on the engine that allow 
the parallelization of pattern matching actions (as seen in 
the second experiment that follows). 

Moreover, as Balana or any other XACML engine 
doesn’t support context inferencing, additional code was 
required in order to achieve similar capabilities with 
PaaSword. In real application scenarios such an implemen-
tation with Balana would be very difficult to maintain 
since updates or creation of new policies would require 
manual updates of this code. This fact constitutes a signif-
icant advantage of PaaSword paid with some time penalty 
as the number of rules increases. In addition, since the 
PaaSword engine features semantic access control based 
on an extensible model, each authorization request re-
quires pre-processing by the PaaSword Controller before 
the Semantic Authorization Engine is called. This pre-pro-
cessing step transforms the incoming request into a con-
crete set of addressable Rules to be handled by the engine. 
The Semantic Authorization Engine then creates addi-
tional negation rules as the basis of PaaSword's approach 
of a closed world assumption. While, in Balana, the de-
ployed rules, include context expressions with one attrib-
ute and with a set target value that should be detected in 
order to provide an authorisation permit result.  

 

11 https://docs.jboss.org/drools/release/7.19.0.Final/drools-

docs/html_single/index.html  

Nevertheless, a second series of experiments were con-
ducted to further study the behavior of PaaSword under 
various loads of simultaneous requests. This second round 
of experiments was conducted with an upgraded version 
of the PaaSword ABAC engine, which relied on a radically 
enhanced release of Drools reasoning engine (version 
7.19.0.Final). The engine is now able to evaluate more busi-
ness rules simultaneously by dividing the RETE and 
PHREAK11 pattern-matching algorithms in independent 
partitions and evaluating them in parallel. This inherent 
capability improved throughput and reduced significantly 
the processing time per request.  

The experiments were conducted as follows. The ABAC 
engine was provided with an initial set of knowledge tri-
ples for specific Subjects, Objects, Actions and their prop-
erties. After the initialization, many concurrent sets of au-
thorization requests were submitted to the engine. These 
sets included 10, 100, 200, 300, 400, 500, 600, 700, 800, 900 
and 1000 simultaneous requests. Every 100ms the engine 
was queried in order to infer the amount of requests that 
have been replied. A specific probe was installed to meas-
ure the end-to-end execution time along the memory con-
sumption.  

This flow was repeated for 4 different setups. The first 
setup includes an ABAC engine hosting only one rule file 
with one context expression. The second setup includes an 
ABAC engine hosting only one rule file with a complex 
context expression (with 10 attributes). The third setup in-
cludes an ABAC engine hosting 10 rules with a complex 
expression. Finally, the fourth setup relates to an engine 
hosting 10 policies with 10 rules each. Each request was ac-
companied by a random set of attributes and each experi-
ment (e.g. 10 simultaneous requests for setup 1) was con-
ducted 10 times in order to get unbiased results. Fig. 10 
gives the average serving time of a single request, as the 
number of simultaneous requests increases (lines P-Setup 
1-4). The corresponding times of Balana++ are also in-
cluded for comparison (B-Setup 1-4). Executions with less 
than 300 simultaneous requests completed too fast (poll 
time was 100ms), hence their measurements have been 
considered inaccurate and have been omitted. 

According to the Fig. 10, the average request serving 
time for PaaSword engine seems to converge as the num-
ber of requests increases. Contrary the corresponding 

 

Fig. 8. PaaSword vs. Balana++ – Total execution time 

 

Fig. 9. PaaSword vs. Balana++ – Memory consumption 
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readings of Balana++ linearly increase. PaaSword engine 
measurements span from 1.4ms (setup 1) up to 4.4ms 
(setup 4), and clearly outperform Balana++ as the parallel-
ization capabilities of the upgraded and underlined Drools 
engine significantly improved the results. 

7 RELATED WORK  

This section outlines related work for the main area of at-
tention of this paper, namely access control models; it also 
outlines related work for policy expression and manage-
ment as it forms a seminal part of our work.  

7.1 Access Control Models 

One can generally discern three “traditional” access con-
trol models [20]: Mandatory Access Control (MAC), Dis-
cretionary Access Control (DAC) and Role-Based Access 
Control (RBAC); these are also known as identity-based 
models for they identify users and resources based on their 
(unique) names [21]. Identity-based models are inherently 
inadequate for cloud computing as they can only fulfil se-
curity requirements in specific environments [22]; they are 
also context insensitive by-design. Several research efforts 
have been proposed aiming at extending these models 
with features that potentially render their use adequate in 
cloud settings [23]; these efforts are briefly outlined below.  

7.1.1 Extending RBAC for Cloud Computing 

In [24], Tianyi et al. propose the cloud optimized RBAC 
model (coRBAC) which inherits features from distributed 
RBAC (dRBAC). coRBAC merges dRBAC’s decentralised 
authentication services and isolates different organizations 
by implementing an internal RBAC in each one of them. 
The approach heavily depends upon a Certificate Author-
ity (CA) for issuing user certificates which may cause effi-
ciency and scalability problems as a new certificate must 
be issued each time access is required; in addition, it con-
stitutes a single point of attack. 

In [25], the authors propose a Task-Role-Based Access 
Control (T-RBAC) scheme for cloud-based health care sys-
tems. T-RBAC enables dynamic activation and revocation 
of user permissions based on the task at hand, whilst it in-
troduces a workflow authorization model for synchroniz-
ing workflow with authorization flow. Nevertheless, it 
fails to discern sensitivity levels for protected data objects, 
whilst it is not clear how authorization information may be 

meaningfully shared between different health institutions. 
In [26], Wang et al. recognise that trust is a main concern 

in cloud computing due mainly to the large number of us-
ers and the diverse role classifications utilised across dif-
ferent clouds; they therefore propose an adaptive access al-
gorithm that enriches RBAC with trust relationships be-
tween cloud service providers and cloud consumers. Trust 
levels are calculated dynamically, based on observed user 
behaviour.   

In [22], Younis et al. propose an RBAC-based access con-
trol model for cloud computing in which users are classi-
fied based on their jobs and are thus placed in a security 
domain relative to their role; each role comprises a set of 
tasks, and each task has its individual security classifica-
tion. Dynamic and random behaviours of users are consid-
ered by introducing a risk engine, whereas security tags 
are issued in untrusted or semi-trusted environments that 
comprise a user’s role, classification, and permissions. 

In [27], Hummer et al. propose an RBAC-based model 
for defining and enforcing Identity and Access Manage-
ment (IAM) policies in cross-organizational SOA business 
processes. The processes are described using the WS-BPEL 
standard, whilst the access policies (roles, permissions and 
mutual exclusion relations between roles) are expressed in 
a domain-specific language (DSL) for abstracting away 
from technological details and involving domain experts 
in the security modeling process. At deployment time, the 
WS-BPEL process is instrumented with special activities to 
ensure its compliance to the IAM policies at runtime 

A main drawback of the aforementioned approaches 
compared to the work presented here is that they fail to 
effectively integrate, hence take into account, dynamically-
evolving contextual information in access control deci-
sions. As already stated, this is an important prerequisite 
for coping effectively with security challenges in the cloud 
domain, especially in cases where a lot of context manifes-
tations should be considered [13]. 

7.1.2 Infusing Context Awareness 

In an attempt to enhance security in remote service ac-
cesses, a number of efforts have focused on extending 
identity-based models with location-awareness [20, 28]. 
Location-aware access control (LAAC) enables access deci-
sions to take into account the physical location from which 
access requests originate. Nevertheless, even though 
LAAC models have been studied extensively [28], they 
generally lack the ability to consider any contextual attrib-
utes other than the subjects’ physical location (and, of 
course, its credentials). To overcome this limitation, sev-
eral apporaches that attempt to integrate a wider range of 
contextual attributes have been proposed. In [29], the au-
thors propose a scheme that also considers the temporal 
characteristics of a request. In [16], Hu et al. propose the 
Attribute-based Access Control (ABAC) scheme which is ca-
pable of taking into account any attribute that synthesises the 
context of an entity that is deemed relevant to a request; nota-
bly, ABAC has gained increased popularity due to its diffused 
XACML implementation that has been endorsed as an OASIS 
standard [12].  

  

Fig. 10. PaaSword* vs. Balana++ – Average request serving time 
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In a similar vein, the authors in [30] propose the Con-
text-Aware RBAC (CA-RBAC) model for pervasive appli-
cations that is able to integrate and use contextual infor-
mation generated from ambient sensors in an “active 
space”. Covington et al. –motivated by the needs of intelli-
gent home applications– introduce the notion of context-
aware access control (CAAC) [31]; they propose a set of 
services that are security-enabled based on the location of 
not only the subject of a request, but also of the targeted 
object; however, as opposed to the work reported here, the 
proposed model fails to account for the specicifity of spa-
tial information such as the multi-granularity of the posi-
tion. In [32], Y. Yang et al. propose an IAM Architecture for 
cloud computing, based on several security services of-
fered to cloud customers; they seem to lack, however, the 
foundation in established and diffused access control 
standards, such as XACML, and instead invent new termi-
nology for well-defined IAM concepts. In [33], Lodderstedt 
et al. propose SecureML, an RBAC-based modelling lan-
guage for integrating access control information into appli-
cation models expressed in UML; the authors introduce the 
notion of authorization constraints that are expressed in 
the Object Constraint Language (OCL) and articulate con-
textual conditions that must be fulfilled for granting access 
to sensitive resources.  

A main drawback of the aforementioned approaches 
compared to the work presented here is their inability to 
define a flexible and extensible underlying context model 
that would permit the definition of relationships between 
contextual attributes, thus paving the way for automated 
reasoning about the satisfaction of access control policies 
in the face of evolving and dynamically-generated contex-
tual conditions; naturally, as discussed in Section 2, this 
renders these schemes overly rigid for the requirements of 
cloud-based systems as the contextual information piggy-
backed on access requests must necessarily match, at the syn-
tactic level, the corresponding information encoded in the 
policies.  

To overcome this limitation, the access control models 
proposed in [34—37] advocate two main design guide-
lines: (i) they incorporate context-awareness to control re-
source access and to enable dynamic adaptation of policies 
depending on context changes; (ii) they employ semantic 
technologies for context/policy specification to allow 
high-level description and reasoning about context and 
policies12. Compared to our work, however, none of these 
approaches has been designed to provide fine-grained 
data access control, e.g. by providing the ability to specify 
different access rules for different rows of a database. 
Moreover, as opposed to our work, none of these ap-
proaches provides any means for generically describing 
access control policies which crucially precludes any auto-
mated checks regarding: (i) the well-formedness of policies, 
i.e. whether policies include all the (contextual) information 
required for granting, or denying, access to sensitive data; (ii) 
the disclosure of any inter-policy relations such as subsump-

 

12 On a similar note, the XACML Technical Committee discussed possi-
ble approaches of enriching ABAC with semantic technologies (see 
https://wiki.oasis-open.org/xacml/XACMLandRDF); however, these 

tion and contradiction. Such checks are clearly of utmost im-
portance for they increase our assurance on the effectiveness 
of the policies, especially of complex ones that integrate a 
multitude of contextual attributes. Last but not least, as op-
posed to our work, none of these approaches addresses the 
scalability issues that semantic reasoning brings about.  

7.1.3 Attribute-Based Encryption 

Recently Attribute-Based Encryption (ABE) has gained 
popularity as a data access control mechanism, where en-
cryption keys are derived based on contextual attributes 
that characterise a user, thus allowing any user with the 
right attributes to successfully decrypt and access the en-
crypted files. The ABE paradigm has been applied to cloud 
computing in several different approaches, e.g. [38—42]. 
ABE-based solutions have three major limitations com-
pared to our approach: First, ABE is only applicable for 
data access control; other resources (e.g. services, actua-
tors) cannot be controlled with ABE since no additional en-
forcement mechanisms beyond encryption are typically 
employed. Second, when a user's attributes are revoked in 
an ABE system, all files associated to the attributes have to 
be re-encrypted and the keys to be updated. This puts 
heavy computation and key update requirements on the 
data owner or the system to which the owner has dele-
gated this task. Last but not least, ABE-based solutions are 
bound to predefined sets of attributes which renders them 
overly rigid for the requirements of cloud-based systems 
as the contextual information piggybacked on access requests 
must necessarily match, at the syntactic level, the correspond-
ing attribute values articulated by the encryption scheme. 

Table 9 summarises how the works outlined in this sec-
tion, compare to our work. The comparison is based on five 
distinct criteria that are seminal for judging the suitability 
of an approach for cloud settings. Based on this table, it be-
comes evident that none of the reviewed works are able to 
demonstrate support that satisfies all these five criteria. 
The work introduced in this paper addresses all these as-
pects and with respect to the context sensitivity, it is able 
to cope with dynamically-generated contextual attributes.  

7.2 Policy Management  

As shown in [43], a major weakness of contemporary open-
source registry and repository systems is that policy defi-
nition and policy enforcement are entangled in the imple-
mentation of a single software component: the rules that a 
policy comprises are typically encoded in an imperative 
manner, as part of the same code that checks for potential 
policy violations. This has a number of negative repercus-
sions among which is the lack of portability and the lack of 
explicit representation of policy relationships. To over-
come this weakness, the research community has consid-
ered approaches that promote declarative policy represen-
tations; these approaches may be discerned into purely 
syntactic and semantic ones.  

discussions have yet to lead to the development of any standard docu-
ments. 
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7.2.1 Syntactic Descriptions 

Syntactic descriptions were introduced along with the Ser-
vice Oriented Architecture (SOA) model as part of a stand-
ardisation efforts aiming, primarily, at facilitating interop-
erable data exchanges in interactions. In the realm of poli-
cies and policy-based applications, syntactic descriptions 
promote a declarative approach to policy expression, one 
which aims at tackling the disadvantages of encoding pol-
icies imperatively [18]. A number of formalisms that advo-
cate the use of markup languages for the declarative rep-
resentation of policies have been proposed (RuleML13, 
XACML [12], WS-Trust [44]). Although they succeed in 
disentangling the representation of policies, from the code 
employed by an application for enforcing them, these for-
malisms lack any form of semantic agreement outside the 
confines of the organisations that created them. Any in-
teroperability, thus hinges on ad-hoc vocabularies that are 
shared by the various stakeholders that participate in an 
interaction. This inevitably brings about the following dis-
advantages: (i) it restricts the portability and reusability of 
policies; (ii) it hampers the determination of inter-policy 
relations; (iii) it leads to ad-hoc reasoning about policy 
compliance, one which is perplexed with the particular vo-
cabularies that are utilised for expressing the rules accord-
ing to which the reasoning takes place; (iv) it hinders the 
performance of rule-based policy governance. 

7.2.2 Semantic Approaches 

To overcome these disadvantages, a number of seman-
tically-rich approaches to the specification of policies have 
been proposed [45, 46]. These generally embrace Semantic 
Web representations (e.g. OWL14) for capturing the 
knowledge artefacts that underly policies. More specifi-
cally, these approaches employ ontologies in order to as-
sign meaning to actors, actions and resources. Being a for-
mal, explicit specification of a shared conceptualization 
[47], an ontology provides a flexible, formal, and unambig-
uous means of agreement upon the semantics of concepts, 
and their interrelations, in a given domain of discourse. In 
[45], the authors propose KAoS – a general-purpose frame-
work for managing, monitoring and enforcing a wide 
range of policies. In [46], the authors propose POLICYTAB 
for facilitating trust negotiation in Semantic Web environ-
ments. The aforementioned semantically-enhanced ap-
proaches rely on bespoke, non-standards-based, ontolo-
gies for the representation of policies. This by definition re-
stricts the generality, hence the portability and reusability 
of the policies that they represent.  In contrast, our reliance 
on Linked-USDL raises this restriction. In addition, their 
reliance on OWL, despite the obvious benefits stemming 
from the rich set of properties that OWL offers, raises con-
cerns about the degree to which these approaches are light-
weight, hence their performance is questionable. 

8 CONCLUSIONS 

We have proposed, implemented and evaluated an ap-
proach based on the popular access control standard 
 

13http://wiki.ruleml.org/index.php/SpecicationofDelibera-
tionRuleML1:01 

XACML, which adds semantic reasoning capabilities to the 
policy design, attribute gathering, and policy evaluation 
process. Using this approach, we can bridge the gap be-
tween syntactically different, but semantically equal attrib-
utes that are relevant for policy evaluation, thus furthering 
federation of policies, and related attribute gathering be-
tween different administrative domains. 

Based on the performed comparative evaluation, two 
series of experiments were conducted. The first one in-
volved an increasing number of rules to be evaluated while 
the second one involved an increasing number of simulta-
neous access requests. The PaaSword solution, proved to 
be slower than the Balana WSO2 engine in the first set of 
experiments. But, before conducting the second experi-
ment PaaSword was upgraded based on the latest version 
of the underlying Drools engine. Based on the advanced 
parallelization capabilities of the rule engine PaaSword 
outperformed Balana++ with respect to the average re-
quest serving time for a static number of rules deployed.  
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