
SOCA (2017) 11:445–458
https://doi.org/10.1007/s11761-017-0220-2

SPECIAL ISSUE PAPER

Cloud service brokerage: enhancing resilience in virtual
enterprises through service governance and quality assurance

Simeon Veloudis1 · Iraklis Paraskakis1 · Christos Petsos1

Received: 1 February 2017 / Revised: 11 July 2017 / Accepted: 9 October 2017 / Published online: 24 October 2017
© Springer-Verlag London Ltd. 2017

Abstract We argue that cloud service brokerage (CSB)
mechanisms can strengthen the resilience of services in
cloud-based VEs. In this respect, we present the Service
Completeness-Compliance Checker (SC3), a mechanism
which offers capabilities with respect to the quality assurance
dimension ofCSB.More specifically, the SC3 strengthens the
resilience of cloud services by evaluating their conformance
with pre-specified policies concerning the business aspects
of their delivery, as well as by managing the evolution of
their lifecycle in a controlled and policy-based manner. By
relying on an ontology-based representation of policies and
services, the SC3 achieves a proper separation of concerns
betweenpolicydefinition andpolicy enforcement. This effec-
tively enables the SC3 to operate in a manner generic and
agnostic to any underlying cloud delivery platform, as well
as to reason about the well-formedness of the pre-specified
policies.

Keywords Virtual enterprises · Cloud computing · Cloud
service brokerage · Governance · Ontologies

B Simeon Veloudis
sveloudis@seerc.org

Iraklis Paraskakis
iparaskakis@seerc.org

Christos Petsos
chpetsos@seerc.org

1 South East European Research Centre (SEERC), The
University of Sheffield, International Faculty CITY College,
24 Proxenou Koromila St, 54622 Thessaloníki, Greece

1 Introduction

Cloud computing has evolved out of Grid computing [10,26]
as a result of a shift in focus from an infrastructure aim-
ing to deliver mainly storage and compute resources, to
an economy-based computing paradigm aiming to deliver
a wide range of resources abstracted as services [10]. Such a
shift is anticipated to impact the manner in which businesses
and organisations share skills and core competencies within
a distributed collaborative network [28]. More specifically,
activities performed by a dynamic multi-institutional virtual
enterprise (VE) may involve the use of heterogeneous, exter-
nally sourced cloud services which span different clouds and
capability levels (IaaS, PaaS, and SaaS) [5], and which are
entrusted by their userswith data, software, and computation;
we shall term such a VE a cloud-based one.

As an example, consider the following scenario. An indus-
trial consortium is formed to collaboratively process the data
produced as part of a seismic survey. Such processing inte-
grates software components, offered as a service, by different
consortium participants (SaaS offerings). Each component
may be operating on a participant’s proprietary infrastructure
or, alternatively, on infrastructure provisioned as a cloud ser-
vice (IaaS offering).At the same time, the simulation requires
the development of new specialised software components. To
this end, the consortium is provisioned thenecessary software
platform for developing these applications as a service (PaaS
offering).

Evidently, the IT environment of a cloud-based VE
is transformed into a complex ecosystem of intertwined
infrastructure, platform, and application services delivered
remotely, over the Internet, by diverse service providers. As
the number of services proliferates, it becomes increasingly
difficult to keep track of when and how these services evolve
over time, either through intentional changes, initiated by

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11761-017-0220-2&domain=pdf
http://orcid.org/0000-0002-8197-6667


446 SOCA (2017) 11:445–458

their providers, or through unintentional changes, such as
variations in their performance and availability. It is therefore
increasingly important to instil into these services resilience
aspects both at design time and at run-time.

According to [9], resilience is the capacity to survive,
adapt, and grow in the face of turbulent change. In our
case, for the survival and adaptation of cloud services we
require, for example, that at design time cloud services are
provided redundantly, e.g. through at least two distinct end-
points. Additionally, for survival and adaptation at run-time,
we require the existence of mechanisms capable of pre-
dicting and evading potential failure of a service. Should a
failure occur, the mechanism must be able to recover from
that failure and enable the smooth operation of the ser-
vice that contributes to the overall business continuity and
growth.

In order to strengthen the resilience of the services in
such an ecosystem, cloud-based VEs are anticipated to
increasingly rely on cloud service brokerage (CSB) [16].
In this respect, the work in [28] proposed a conceptual
architecture of a framework which offers capabilities with
respect to twodimensions ofCSB, namelyQualityAssurance
Service Brokerage and Service Customisation Brokerage.
These capabilities revolve around the following themes: (i)
governance and quality control; (ii) failure prevention and
recovery; and (iii) optimisation. The first theme strengthens
the resilience of cloud services by checking their compliance
with pre-specified policies concerning the technical, busi-
ness, and legal aspects of service delivery; it also strengthens
the resilience of cloud services by testing their confor-
mance with their expected behaviour and by continuously
monitoring their operation. The second theme strengthens
the resilience of cloud services through the reactive and
proactive detection of service failures, and the selection of
suitable strategies to prevent—or recover—from such fail-
ures. Finally, the third theme ensures that an acceptable
level of service is maintained in the face of changing user
requirements—this is achieved by continuously optimising
service consumption with respect to a diverse set of quantita-
tive and qualitative characteristics such as cost, quality, and
functionality.

Continuing the work in [28], this paper reports on the
implementation of a particular mechanism of the afore-
mentioned framework, namely the Service Completeness-
Compliance Checker (SC3), which offers capabilities with
respect to the governance and quality control theme. More
specifically, the SC3 strengthens the resilience of cloud ser-
vices by:

– evaluating their conformance with pre-specified policies
concerning their business aspects of delivery;

– managing the evolution of their lifecycle in a controlled
and policy-based manner.

By relying on a declarative representation of policies and
services, one which is based on an RDF(S) [22] ontology,
the SC3 achieves a clear separation of concerns: policies are
represented at a higher level of abstraction, independently
of the code that the SC3 employs for enforcing them. This
brings about the following seminal advantages. (i) It keeps
the SC3 generic and orthogonal to any underlying cloud
delivery platform employed by a cloud-based VE. (ii) It
allows reasoning about thewell-formedness, hence the effec-
tiveness, of the policies. It is to be noted here that such a
separation of concerns is generally absent in contemporary
governance mechanisms [27], with negative repercussions
on their portability, reusability, as well as on their ability to
automatically reason about the effectiveness of the policies
that they employ.

The rest of this paper is structured as follows. Section 2
presents a motivating scenario. Section 3 outlines our declar-
ative approach to policy representation. Section 4 outlines
how the SC3 extracts from this representation the necessary
information for the subsequent service and policy evaluation
processes. Section 5 describes how theSC3 evaluates the con-
formance of services with policies, and Sect. 6 describes how
the SC3 evaluates the well-formedness of these policies. Sec-
tion 7briefly elaborates onhow theSC3 manages the lifecycle
of services in a policy-based manner, and Sect. 8 outlines our
approach to testing the SC3. Finally, Sect. 9 presents related
work and Sect. 10 outlines conclusions and future work.

2 Motivating scenario

Thework reported in [28] proposed a conceptual architecture
of a CSB framework offering capabilities spanning the main
phases of a service’s lifecycle, namely Service On-boarding,
Service Operation, and Service Evolution. The SC3 offers
capabilities with respect to the Service On-boarding and Ser-
vice Evolution phases.1 Below, we identify these capabilities
through the prism of the example of Sect. 1.

Let CPx (stands for Cloud Platform x) be a cloud deliv-
ery platform that hosts various services that are potentially
used by the industrial consortium. The platform houses a
variety of apps developed by CPx’s network of ecosystem
partners. CPx also allows advanced users to develop and
deploy custom applications on the platform and to create
rich compositions of applications (mashups) offered by third-
party service providers.

Suppose that an ecosystem partner offers a new service on
CPx, call it StoreCloud, which provides an encrypted and

1 The SC3 also offers capabilities with respect to the Service Operation
phase and, in particular, with respect to continuously monitoring the
behaviour of a service. These capabilities shall not, however, concern
us in this paper.

123



SOCA (2017) 11:445–458 447

Table 1 Entry-level criteria

Service-level
attribute

Acceptable
values

SLO Description

[100, 1000) Gold

Storage [10, 100) Silver Size (TB)

[0, 10) Bronze

[0.99999, 1) Gold

Availability [0.9999, 1) Silver Uptime ratio

[0.999, 1) Bronze

256 Gold

Encryption 192 Silver Key length

128 Bronze

versioned persistence layer for storing intermediate results
during the various phases of the seismic survey. In order
for the new service to be on-boarded on CPx, a number of
entry-level criteria must be satisfied. These crucially capture
a set of service-level objectives (SLOs) expressed in terms of
restrictions on relevant service-level attributes. Table 1 sum-
marises the service-level attributes, and their corresponding
SLOs, considered for the purposes of this example. These
SLOs essentially form CPx’s business (or broker2) policy
(BP) with respect to on-boarding StoreCloud.

We assume that the ecosystem partner who offers Store-
Cloud, hereafter referred to as the service provider (SP),
submits a service description (SD) which details the man-
ner in which StoreCloud is to be deployed on CPx. The
SC3 offers an SD evaluation capability which essentially
allows the cloud-based VE to determine whether this SD
is compliant with CPx’s BP. Such a capability entails two
kinds of evaluation: SD completeness evaluation and SD
compliance evaluation. The former kind of evaluation aims
at determining whether the SD specifies values for all
required service-level attributes. For example, an SD which
does not specify a value for the encryption attribute can-
not be considered complete. The latter kind of evaluation
aims at determining whether the specified attribute values
fall within the corresponding ranges prescribed in the BP.
For example, an SD which specifies a 64-bit value for
the encryption attribute cannot be considered compliant.
Clearly, the aforementioned evaluations seek to determine
whether StoreCloud attains the SLOs specified in CPx’s
BP. In this respect, they strengthen the service’s resilience.

The SC3 also offers a policy evaluation capability and a
service lifecycle management capability. The former essen-
tially allows the cloud-based VE to determine the well-
formedness, hence the effectiveness, of CPx’s BP. The latter

2 We use the term ‘broker’ to emphasise that, in our work, such a busi-
ness policy is formulated according to the declarative approach of our
brokerage framework (see Sect. 3).

ensures that services evolve, e.g. through updates and depre-
cation activities, in a controlled and policy-based manner.

The aforementioned capabilities reflect—and therefore
hinge upon—our declarative framework for representing the
SLOs incorporated in the BP and, ultimately, the BP itself.
In this respect, it is essential that we provide an account of
this declarative framework before proceeding to explain how
the SC3 in fact offers these capabilities.

3 Declarative representation of BPs

As already mentioned in Sect. 1, our declarative framework
for the representation of BPs and SDs unravels the definition
of a policy from the actual code that the SC3 employs for
enforcing it. This brings about the following seminal advan-
tages: (i) it keeps the SC3 generic and orthogonal to the
underlying cloud delivery platform as policies are expressed
in a higher-level formalism; (ii) it forms an adequate basis
for reasoning generically about the well-formedness, hence
the effectiveness, of the broker policies. Moreover, it enables
the identification of inter-policy relations such as subsump-
tion and contradiction and facilitates the overall governance
of policies.

The declarative framework is based upon Linked USDL
[15]—a lightweight RDF(S) vocabulary of concepts and
properties for modelling, comparing, and trading services
and service bundles, as well as for specifying, tracking, and
reasoning about the involvement of entities in service deliv-
ery chains. Sections 3.1 and 3.2 below provide an account
of this declarative framework; an outline of the advantages
offered by the adoption of Linked USDL is, however, first in
order.

Firstly, Linked USDL draws upon a number of widely
adopted vocabularies such as GoodRelations [11], SKOS
[23], and FOAF [24]. It therefore promotes knowledge shar-
ing, whilst it increases the interoperability, and thus the
reusability and generality, of broker policies. Secondly, by
embracing Linked Data as the core means for capturing facts
about people, organisations, resources and services, Linked
USDL supports large-scale, efficient, multi-party interac-
tions through linking to other ontologies [3,21]. Thirdly,
by offering a number of different profiles,3 Linked USDL
provides a holistic and generic solution able to adequately
capture a wide range of business details.

These advantages facilitate the evaluation of the confor-
mance of cloud services with pre-specified policies concern-
ing their business aspects of delivery and deployment, i.e.
with policies that ensure that services indeed meet certain
objectives regarding the level of functionality that they are
expected to provide. In this respect, they are significant from

3 Such as SLA, Security, IPR, Pricing [15].

123



448 SOCA (2017) 11:445–458

Fig. 1 Linked USDL SLA for the ‘gold’ availability SLO

the standpoint of increasing our assurance upon the resilience
of cloud services. For instance, a policy may require that a
particular service is available from at least two distinct end-
points, hence increasing our assurance upon the resilience of
the service in case one of the endpoints goes down.

Linked USDL comprises a Core schema which in our
model is used for representing BPs as well as for encod-
ing certain invariable characteristics of BPs (see Sect. 3.2 for
more details). From this Core schema, a number of exten-
sion schemata hinge addressing diverse business aspects of
a BP (such as Pricing, SLA, Security, and IPR); for the
purposes of this work, we focus on the SLA schema. In par-
ticular, Sect. 3.1 provides an account of how our declarative
framework for the representation of policies is derived as a
specialisation of Linked USDL SLA.

3.1 Declarative representation of BPs and SLOs in
Linked USDL SLA

We model the SLOs of a BP, hence the BP itself, through a
specialisation processwhich constructs a framework of suit-
able subclasses and sub-properties of the Linked USDL SLA
classes and properties depicted in Fig. 1.4 These subclasses

4 Note that in order to reduce notational clutter we avoid specifying
namespaces for classes and properties, unless a class or property comes
from an external ontology (e.g. the GoodRelations ontology). In addi-
tion, the following conventions are used in the figures of this paper (see

are then populated by instances specified in the SDs that are
evaluated for conformance with the BP (e.g. StoreCloud’s
SD). Below, we outline this process for the ‘gold’ SLO of
StoreCloud’s availability attribute5 (see Sect. 2).

3.1.1 SLO representation

For each service-level attribute, the BP offers a subclass of
the class ServiceLevel for accommodating the attribute’s
SLOs. For example, for accommodating the SLOs of the
availability attribute (i.e. the ‘gold’, ‘silver’, and ‘bronze’
SLOs of Table 1), it offers the class SL-Availability (see
Fig. 1). SLOs appear as instances of this class—e.g. the SL-
GoldAvailability instance specified inStoreCloud’s SD (see
Fig. 1).

Each SLO is defined in terms of a service-level expression
(SLE) which specifies the conditions that must be satis-
fied in order for the SLO to be met. More specifically,
for each service-level attribute, the BP offers a subclass of
the class ServiceLevelExpression for accommodating the

Footnote 4 continued
also the legend of Fig. 1): a class is represented by an oval; a property
is represented by an arrow decorated with the name of the property; a
subclass relation is represented by an arrow decorated with the subset
symbol (⊆); instance-class associations are represented with perforated
lines.
5 Of course, an analogous account applies to the rest of the attributes
and SLOs of Table 1.

123



SOCA (2017) 11:445–458 449

Fig. 2 Linked USDL Core classes, interrelations and instances

SLEs that correspond to that attribute’s SLOs. For exam-
ple, the SLEs that correspond to the availability attribute’s
SLOs are modelled as instances of theSLE-Availability sub-
class (see Fig. 1). These instances appear in the SDs that
are evaluated for conformance with the BP—e.g. the SLE-
GoldAvailability instance in StoreCloud’s SD. SLOs are
associated with their corresponding SLEs through appro-
priate sub-properties of the hasServiceLevelExpression
property. In particular, the SLOs related to the availability
attribute are associated with their SLEs through the has-
SLEAvailability property (see Fig. 1).

Each SLE binds a variable that corresponds to a partic-
ular attribute, one which is associated with an allowable
range of values. Following an approach entirely sym-
metrical to the one outlined above for SLOs and SLEs,
variables are modelled as instances of appropriate sub-
classes of the class Variable (e.g. the class Var-Availability
depicted in Fig. 1), whilst value ranges are modelled as
instances of appropriate subclasses of the GoodRelations
class gr:QuantitativeValueFloat6 (e.g. the class Allowe-
dAvailability depicted in Fig. 1). These instances appear in
the SDs that are evaluated for conformancewith theBP—e.g.
the Var-GoldAvailability and AvailabilityValue instances in
StoreCloud’s SD. SLEs are associated with their correspond-
ing variables through sub-properties of the hasVariable
property (e.g. thehasVarAvailability of Fig. 1), and variables

6 Or of the class gr:QualitativeValue, in case of qualitative variables.

are associated with their allowable values through sub-
properties of the hasDefaultQuantitativeValue property.7

3.1.2 Service-level profiles

Section 3.1.1 outlined a framework for representing SLOs.
This framework is associated with the pertinent BP8 through
the concept of a service-level profile (SLP). SLPs are essen-
tially groupings of SLOs whose purpose is to formulate
different service deployment ‘packages’ that are allowable
by the BP. For example, in the scenario of Sect. 2, the ‘gold’
SLP formulates a deployment package comprising the ‘gold’
SLOs of the attributes of Table 1.9

SLPs take the form of instances of appropriate sub-
classes of theServiceLevelProfile class, e.g. theSLP-Gold
instance of the SLP-CPx subclass of Fig. 1. SLPs are
associated with their constituent SLOs through appropri-
ate sub-properties of the hasServiceLevel property—an

7 Or through sub-properties of the hasDefaultQualitativeValue, in
case of qualitative values.
8 Recall from Sect. 2 that a BP is, after all, a set of SLOs.
9 Of course, which SLOs are comprised by a particular SLP is an
application-specific issue determined by CPx itself. For instance, CPx
may choose to define a ‘gold’ SLP as comprising either ‘gold’-only
SLOs, or two ‘gold’ SLOs and a ‘silver’ SLO; alternatively, it may
choose to define the latter grouping as a ‘silver’ SLP.

123



450 SOCA (2017) 11:445–458

Fig. 3 Conceptual architecture

example is the property hasSLAvailability of Fig. 1 which
associates the ‘gold’ SLP with the ‘gold’ availability SLO.

We demonstrate next how BPs are linked with their SLPs
and thus ultimately with the SLOs that they offer. To this end,
Linked USDLs Core schema is utilised.

3.2 Declarative representation of BPs in Linked USDL
core

A BP is represented as an instance of the Linked USDL
Core class ServiceModel (see Fig. 2). More precisely, it
takes the form of an instance of a subclass of this class—e.g.
the instance BrokerPolicyCPx of the class ServiceModel-
CPx depicted in Fig. 2.10 The purpose of such a subclass
is to accommodate all of CPx’s BPs.11 A BP is associated
with the SLPs that it encompasses through sub-properties of
theLinkedUSDLCore propertyhasServiceLevelProfile—
e.g. through the hasSLPCPx property of Fig. 2.

In addition to modelling BPs, Linked USDL’s Core
schema has an additional role to play: it provides an adequate
basis for formally capturing certain tangential knowledge
artefacts about a BP12—these are: (i) the identity of the
business entity which is responsible for defining the BP
(i.e. CPx, in the case of the scenario of Sect. 2); (ii) the
role in the capacity of which this business entity acts when
defining the BP. These knowledge artefacts are associated
with the BP through the Linked USDL classes and proper-
ties depicted in Fig. 2. More specifically, BrokerPolicyCPx
is associated with an instance, say EntityCPx, of the class

10 The classes and properties depicted in Fig. 2 are by no means the
complete set of classes and properties offered by Linked USDL Core,
but rather an appropriate subset discerned for the purposes of this work.
11 Although in this paper we concentrate (without loss of generality)
on a single BP, a cloud delivery platform such as CPx may employ a
number of different policies—e.g. in order to accommodate the needs
of different service categories.
12 Tangential in the sense that they do not describe core aspects of a BP
but rather focus on pertinent peripheral information.

EntityInlvolvement through the propertyhasEntityInvolve-
ment. EntityCPx is further associated with an instance,
say CPx, of the class gr:BusinessEntity via the property
ofBusinessEntity. The instanceCPx identifies the business
entity which is responsible for defining the BP. In addition,
EntityCPx is associated with the instance Intermediary of
the class gr:BusinessRole via the property withBusiness-
Role. The instance Intermediary identifies the role in the
capacity of which CPx acts when defining the BP.

4 SC3: BP parsing

This section describes how the SC3 parses a BP in order
to extract the necessary information for evaluating the com-
pleteness and compliance of SDs, as well as for evaluating
the well-formedness of the BP. A brief description of a con-
ceptual architecture for the SC3 is, however, first in order.

4.1 Conceptual architecture

As depicted in Fig. 3, the SP submits StoreCloud’s SD
through the SP-facing component—an interface which
exposes an editor for facilitating the construction of the SD.
The SD is then transported to the SC3 and also stored in the
Governance Registry (GReg) depicted in Fig. 3; the trans-
portation takes place through a Publish/subscribe (Pub/sub)
system.An explanation of the reasons for opting for the open-
sourceWSO2 Carbon platform [36] (see Fig. 3), aswell as for
advocating a Pub/sub system for transporting SDs, is omitted
here; a relevant discussion can be found in [6,7].

The SC3 exposes a mechanism which allows subscribers
to register a callback function for the appropriate topic of
the Pub/sub system and (asynchronously) receive the SD.
More specifically, this mechanism utilises the Evaluation-
ComponentSDSubscriber class which is responsible for
orchestrating all the actions required for creating connec-
tions to the Pub/sub system and subscribing to its topics. This

123



SOCA (2017) 11:445–458 451

Table 2 HashMap objects

Map<String, BrokerPolicyClass> serviceModelMap;

Map<String, BrokerPolicyClass> serviceLevelProfileMap;

Map<String, BrokerPolicyClass> serviceLevelMap;

Map<String, BrokerPolicyClass> serviceLevelExprMap;

Map<String, BrokerPolicyClass> expressionVarMap;

Map<String, BrokerPolicyClass> quantValFloatMap;

class triggers the SC3 when a fresh SD arrives. In particular, it
invokes an object of the classPolicyCompletenessCompli-
ance, one which is parameterised with the appropriate pre-
specified BP against which the evaluation will take place.13

The PolicyCompletenessCompliance class is one of the
core classes of the SC3. It offers threemainmethods:getBro-
kerPolicy, completenessCheck, and complianceCheck.
The first method extracts all the required information from
the BP; on the basis of this information, the second and
third methods determine the completeness and compliance
of the SD with respect to the BP (see Sect. 5). The SC3

also offers the method checkBrokerPolicy which evalu-
ates the well-formedness of the (pre-specified) BP (see
Sect. 6).

The aforementioned methods are implemented in Java
using the Apache Jena (Core and ARQ) APIs [1]. In addi-
tion, as we would expect, all methods reflect—and therefore
hinge upon—our declarative framework for the representa-
tion of BPs outlined in Sect. 3.

4.2 The getBrokerPolicy method

The getBrokerPolicy process parses the BP and places the
information that it extracts in the bp object of the class
BrokerPolicy. This class encompasses a number of Java
HashMap objects as attributes (see Table 2). The HashMap
objects reflect our declarative framework for representing the
SLOs incorporated in the BP and, effectively, the BP itself.
More specifically, the getBrokerPolicy method sets out to
construct a programmatic (in-memory) representation of the
BP framework outlined in Sect. 3. In this respect, it starts off
by discovering, for each Linked USDL SLA class C , those
subclasses S of C that appear in the BP. It then instanti-
ates the HashMap attributes of the bp object (see Table 2)
with the corresponding subclasses. This instantiation takes
place through the method getBrokerPolicyClassMap as
indicated by the following line of code for the ServiceLevel

13 The BP is constructed through an interface that exposes an appro-
priate editor and is transported to the SC3 through a relevant topic of
the Pub/sub system (not shown in Fig. 3 to avoid clutter).

class (the rest of the instantiations are entirely analogous and
thus omitted).

bp.setServiceLevelMap(

getBrokerPolicyClassMap(USDL_SLA,”ServiceLevel”))
(1)

The getBrokerPolicy method then proceeds to con-
struct a list of string objects holding the URIs of all
gr:QuantitativeValueFloat instances found in the BP (e.g.
theGoldAvailability instance depicted in Fig. 1); pseudocode
that populates this list is shown in Algorithm 1.

Algorithm 1 Discovering and programmatically represent-
ing QuantitativeValueFloat instances
1: floatQVs[] {declare empty array to hold QuantitativeValueFloat

instance URIs}
2: for each <value, resourceURI> do
3: if (typeOfValue = float) then
4: floatQVs.add(resourceURI) {append to array}
5: end if
6: end for

Subsequently, the getBrokerPolicy method proceeds to
discover all properties in the BP, alongwith their correspond-
ing ranges, which have as a domain one of the subclasses S;
these are effectively all the sub-properties that appear in the
BP. For each discovered sub-property, an object of the class
Subproperty is constructed (see Algorithm 2 for an excerpt
of the relevant code).

Algorithm 2 Discovering and programmatically represent-
ing sub-properties in the BP
Require: Properties {pre-populated array with parsed URIs that cor-

respond to BP properties}
1: for each propertyURI in Properties do
2: Subproperty p {declare sub-property construct}
3: p.uri ← propertyURI
4: p.domain ← extractDomainOf(propertyURI)
5: p.range ← extractRangeOf(propertyURI)
6: end for

5 SC3: SD evaluation

An SD is effectively a set of interconnected instances that
populate the subclasses of the BP framework (see Fig. 1).
Below, we outline the processes that evaluate an SD with
respect to the BP. These processes essentially determine
whether an SD is complete and compliant with respect to
the BP. As already mentioned in Sect. 2, an SD is consid-
ered complete with respect to the BP when it specifies values
for all required (according to the BP) service-level attributes.

123



452 SOCA (2017) 11:445–458

An SD is considered compliant with respect to the BP when
the specified attribute values fall within the corresponding
ranges prescribed by the BP.

5.1 The completenessCheck method

The completenessCheck algorithm starts off by determin-
ing whether the SD encompasses an instance IS of each
class S discovered by the getBrokerPolicy method. Then,
for each object property Po discovered by getBrokerPolicy
such that dom(Po) = S, it determines whether IS is asso-
ciated (via Po) with exactly one instance IS′ of the class
S′ = ran(Po). Similarly, for each data property Pd , such that
dom(Pd) = S, it determines whether IS is associated via
Pd with a data value from ran(Pd). Pseudocode that checks
these associations is shown in Algorithm 3. For example,
let S =SL-Availability (see Fig. 1). The algorithm initially
checks whether the SD contains an instance of S (in this
case SL-GoldAvailability). Let now Po = hasSLEAvail-
ability. The algorithm checks whether SL-GoldAvailability
is associated, via Po, with an instance ofSLE-Availability (an
association which exists with SLE-GoldAvailability). Anal-
ogous checks are performed for the rest of the instances in
the SD framework.

Algorithm 3 Checking instance associations in SDs
1: Property P {declare construct P for holding property}
2: for each instance I do
3: numOfAssocations← countAssociations(I,P) {count number

of associations of I via P}
4: if (numOfAssociations != 1) then
5: throw Exception
6: end if
7: end for

5.2 The complianceCheck method

The compliance checking algorithm proceeds by determin-
ing whether the values, or value ranges, specified in the
SD are in accordance with the allowable values, or value
ranges, specified in the BP. More specifically, the algo-
rithm starts off by determining the values that are associated
with agr:QuantitativeValueFloat instance (e.g. the instance
Var-GoldAvailability of Fig. 1) via each of the proper-
ties hasMinValueFloat and hasMaxValueFloat. If these
values are undefined, an error message is emitted (see Algo-
rithm 4). Otherwise, the algorithm proceeds to check that
the range associated with the gr:QuantitativeValueFloat
instance is indeed subsumed by the corresponding range
declared in the BP (see Algorithm 5). For example, the
algorithm checks whether the range [0.99999, 1) associ-
ated with Var-GoldAvailability is subsumed by the range

[0.9999, 1) associated with the corresponding Availability-
Value instance in the BP (see Fig. 1).

Algorithm 4 Checking the value range associated with each
instance in an SD
1: Instance I {declare construct I for holding instance}
2: minValue ← extractMinValue(I)
3: maxValue ← extractMaxValue(I)
4: if (minValue = null) OR (maxValue = null) then
5: throw Exception
6: end if

Algorithm 5 Checking subsumption between SD and BP
value ranges
Require: valueRangesFromBP {pre-populated array with value

ranges from BP}
1: for each valueRange in valueRangesFromBP do
2: if (maxValue < valueRange.max) AND (minValue ≥ val-

ueRange.min) then
3: return Success
4: end if
5: end for

6 SC3: BP evaluation—the checkBrokerPolicy
method

We now turn our attention to describing the evaluation mech-
anism for checking the well-formedness of a BP with respect
to the ontological framework of Sect. 3. The mechanism is
conceptually divided into two parts: one for evaluating the
Linked USDL SLA portion of a BP and one for evaluating
the Linked USDL Core portion of a BP. These parts are elab-
orated in Sects. 6.1 and 6.2.

Algorithm6Checking associations betweenSLOs andSLEs
Require: SLOs {pre-populated array with SLOs from BP}
1: for each SLO in SLOs do
2: numOfSLEAssociations ← countSLEAssociations(SLO)
3: if (numOfSLEAssociations < 1) then
4: throw Exception
5: end if
6: end for

6.1 Evaluating the SLA portion of a BP

The evaluation mechanism performs a series of checks that
are analogous to the ones outlined in Sect. 5.1 but which
now concentrate on the BP framework (see Fig. 1) rather
than on the interconnected instances that make up the SD.
More specifically, the mechanism checks that each sub-
class that accommodates the SLOs of a particular attribute

123



SOCA (2017) 11:445–458 453

(i.e. each subclass of the class ServiceLevel) is associated
with a subclass that accommodates the SLEs that corre-
spond to that attribute’s SLOs (i.e. to a subclass of the class
ServiceLevelExpression—seeAlgorithm6). It also checks
that this association is materialised through a distinct sub-
property of the property hasServiceLevelExpression (e.g.
the property hasSLEAvailability of Fig. 1). An entirely sym-
metrical set of checks applies to the associations between
SLEs and variables, as well as between variables and quanti-
tative (or qualitative) values.Additionally, type-safety checks
are performed for the declared values (see Algorithm 7).

Moreover, the evaluation mechanism checks that: (i)
all quantitative value instances are delimited by mini-
mum and maximum values through the data properties
gr:hasMinValueFloat and gr:hasMaxValueFloat
respectively; (ii) all quantitative value instances are
assigned an appropriate type through the data property
gr:hasUnitOfMeasurement .

Algorithm 7 Checking associations between variables and
floats
Require: Variable V {a variable from BP}
1: value ← extractValueOf(V)
2: if (typeOfValue != float) then
3: throw Exception
4: end if

The evaluation mechanism also checks that each sub-
class of the classServiceLevelProfile is associated with one
or more subclasses of the class ServiceLevel through dis-
tinct sub-properties of the property hasServiceLevel. For
example, it checks that the SLP-CPx subclass of Fig. 1
that is specifically devised for accommodating all of CPx’s
SLPs is associated with the class SL-Availability through
a sub-property of hasServiceLevel. Of course, an anal-
ogous check applies to any other subclasses of the class
ServiceLevel that accommodate SLOs of other attributes
(e.g. the SLOs of the storage and encryption attributes of
Table 1).

Finally, the evaluation mechanism checks that there exists
an association between the class ServiceModel (which
accommodates the instance that represents the BP—see
Fig. 2) and at least one subclass of the class ServiceLevel-
Profile. It also checks that this association is materialised
through a sub-property of the property hasServiceLevel-
Profile (e.g. the hasSLPCPx property depicted in Fig. 2).

6.2 Evaluating the core portion of a BP

Our aim is to ascertain the following two facts: (i) there exists
an instance of the class ServiceModel which identifies the
BP; (ii) the Core portion of a BP captures the tangential
knowledgementioned in Sect. 3.2, namely the business entity

responsible for defining the BP, as well as the role in the
capacity of which this business entity acts when defining the
BP. Concerning the former fact, the policy evaluationmecha-
nism obtains all those resources that are defined as subclasses
of the class ServiceModel, as well as all the instances that
are encompassed in these subclasses. The mechanism then
ensures that there exists exactly one instance in the subclass
ServiceModelCPx (i.e. the BrokerPolicyCPx instance of
Fig. 2) which identifies the BP.

Concerning the latter fact, the policy evaluation mecha-
nism checks that: (i) BrokerPolicyCPx is associated with
exactly one instance of the class EntityInvolvement via
the hasEntityInvolvement property; (ii) thisEntityInvolve-
ment instance is associatedwith the instanceCPxof the class
gr:BusinessEntity, and with no other instances from that
class; (iii) the sameEntityInvolvement instance is associated
with the instance Intermediary of the class BusinessRole,
and with no other instances from that class.

7 SC3: service lifecycle management

The SC3 provides the following two functionalities with
respect to service lifecycle management: (i) service updates
evaluation; (ii) policy-based service deprecation and removal
management. Regarding the former functionality, the SC3 is
responsible for ensuring the quality of any service updates14

by evaluating their conformance with the BP. As we would
expect, such an evaluation takes place in precisely the same
way as outlined in Sect. 5, and hence, it will not further con-
cern here.

Regarding the latter functionality, the provider of an on-
boarded service may at any time request the deprecation, or
removal, of the service.15 Below, we concentrate on depreca-
tion; an entirely symmetrical account applies to removal. We
are interested in ensuring that any deprecation actions are per-
formed in a policy-basedmanner.More specifically, a service
deprecation policy aims at determining a service deprecation
scheme by specifying a timescale to deprecation—i.e. the
minimum amount of time that must elapse from the receipt
of a deprecation request to the actual deprecation action tak-
ing place.16 A BP may incorporate a number of different
deprecation policies each specifying a different constraint

14 It is assumed that an already on-boarded service is updated when its
SP submits a fresh SD.
15 It is assumed that a deprecated service remains in the system but all
support to it ceases.
16 The purpose of such a timescale is twofold: on the one hand, it
allows the users of the service under deprecation to switch to one or
more services of similar functionality. On the other hand, it allows the
providers of any services that dependupon the service under deprecation
to resolve these dependencies—e.g. again by replacing the service under
deprecation with one or more other services of similar functionality.

123



454 SOCA (2017) 11:445–458

Fig. 4 Deprecation scheme

on the timescale to deprecation. We next briefly elaborate on
how such a deprecation policy can be modelled in Linked
USDL.

7.1 Modelling service deprecation policies

Linked USDL SLA provides an adequate ontological frame-
work for modelling service deprecation policies. In fact, a
service deprecation policy can be considered yet as another
SLO, one that corresponds to a deprecation attribute. Fol-
lowing the modelling approach outlined in Sect. 3.1.1, such
an SLO is ontologically captured as a subclass (say SL-
Deprecation) of the class ServiceLevel (see Fig. 4), with
particular deprecation SLOs taking the form of instances of
SL-Deprecation. Each deprecation SLO is defined in terms
of an SLE which constrains the timescale for deprecation.
Such a deprecation SLE is modelled as a subclass (SLE-
TimeScale) of the class ServiceLevelExpression (see
Fig. 4), with particular deprecation SLEs taking the form of
instances of this class. A deprecation SLO is associated with
its corresponding SLE via the property hasSLETimeScale
which is a sub-property of the Linked USDL SLA hasSer-
viceLevelExpression property.

A deprecation SLE articulates its timescale constraint
by binding a relevant variable—one which is represented
in our model as an instance of the class Var-TimeScale.
More specifically, following an approach entirely symmetri-
cal to the one outlined in Sect. 3.1.1, a deprecation SLE is
associated through the property hasVarTimeScale (a sub-

property of the Linked USDL SLA property hasVariable
—see Fig. 4), with an instance of the class Var-TimeScale.
This instance is in turn bound, through the property has-
DefaultTimeScale (a sub-property of the Linked USDL
SLA property hasVariable), with an instance of the class
AllowedTimeScale, say the instanceGoldTimeScale. The
latter instance is associated through the data property has-
ValueFloat with a particular value that specifies the mini-
mum amount of time that must elapse from the receipt of a
deprecation request until the actual deprecation action can
take place.

7.2 Enforcing deprecation policies

Each service submitted for on-boarding must specify in
its SD a particular deprecation scheme.17 This is done
by incorporating in the SD an appropriate framework of
interconnected instances of the aforementioned classes (see
Fig. 4). This framework is evaluated for conformance with
the corresponding service deprecation policy in the BP in the
same manner as outlined in Sect. 5. Upon receipt of a dep-
recation request for a particular service, the SC3 proceeds to
enforce the deprecation scheme specified in the correspond-
ing SD.

17 Otherwise, the service cannot be admitted for on-boarding as it can-
not conform with the BP.

123



SOCA (2017) 11:445–458 455

8 Testing the evaluation mechanisms

A simple test harness was created for checking the degree
to which the BP and SD evaluation mechanisms operate as
expected. The goal of the test harness is to identify cases of
invalid BPs or SDs which, nevertheless, manage to pass the
evaluation checks. To this end, the test harness automatically
creates erroneous versions of BPs (SDs) by introducing syn-
tactic errors into their RDF triples. The BP (SD) evaluation
mechanism is then triggered to check these erroneous ver-
sions: if one (or more) passes the evaluation, a problem in
the evaluation mechanism is inferred.

More specifically, for every RDF triple (s, p, o) in the BP
(SD), the test harness introduces an error by substituting s
with an erroneous subject s′.18 It then substitutes (s′, p, o)
for (s, p, o) in theBP (SD) and runs the evaluation. If, despite
the erroneous triple, the BP (SD) passes the evaluation, then
this is an indication of a bug in the evaluation mechanism.
The same procedure is applied to the rest of the elements of
the triple, namely the predicate p and the object o.

The test harness unveiled certain omissions in the checks
performed by the evaluation mechanisms. For instance, it
was discovered that the SD completenessCheck method
failed to check that the properties that interconnect the vari-
ous instances in anSDare indeed sub-properties of the correct
Linked USDL SLA properties. This potentially led to invalid
SDs being considered valid. All discovered omissions have
been rectified.

9 Related work

To the best of our knowledge, no works other than [5]
address the quality assurance dimension of CSB in the con-
text of VEs. [5] recognises the need for frameworks that
guide the creation, execution, and management of services
in cloud-based VEs; it does not, however, address the quality
assurance aspect of such frameworks. The rest of this sec-
tion outlines works related to service description languages
and to ontology-driven policy-based governance and quality
control.

9.1 Service description languages

We provide an overview of different strands of service
description formalisms. More specifically, we outline
approaches that: focus on syntactic service descriptions;
consider the underlying semantics of web services; capture
business aspects of services.

Syntactic service descriptions aim, primarily, at facil-
itating the interoperable data exchange between service

18 s′ is derived from s by appending a random character.

registries (notably UDDI), service providers, and service
consumers. Themost prominent example is, perhaps,WSDL
[32]. Nevertheless, syntactic service descriptions can only
aid manual discovery, selection, and composition of ser-
vices. In an attempt to automate these processes, a new breed
of service description languages was introduced that enable
Semantic Web Services [18]. These use ontologies in order
to capture the functionality of web services in terms of an
underlying, domain specific, vocabulary. The rationale is that
since both service descriptions and consumer demands rely
on a common semantics, automatic service discovery, and
composition is, in principle, feasible. Prominent examples
of standardisation efforts in this area include WSMO [30],
OWL-S [29], SAWSDL [34], and SA-REST [31].

Whilst focusing on aspects which are important for the
automatic composition and invocation of web services, the
aforementioned approaches neglect any pertinent business
details or, at best, address them as non-functional prop-
erties. This renders service descriptions cumbersome for
service consumers and third-party intermediaries who are
often interested in both business details and technical spec-
ifications in order to create added value by deploying,
aggregating, customising, and integrating services. A third
strand of description languages has therefore emerged, one
which focuses on the business aspect of services. A promi-
nent example is the Unified Service Description Language
(USDL) [20]. USDL aims at unifying the business, oper-
ational, and technical aspects of a service in one coherent
description framework. Nevertheless, USDL has received
limited adoption due mainly to its complexity and lim-
ited support for extensibility. To overcome these limitations,
Linked USDL [15] has been proposed. Linked USDL is a
remodelled version of USDL which offers the advantages
outlined in Sect. 3.

9.2 Ontology-driven policy-based cloud service
governance and quality control

Cloud service governance refers to policy-based manage-
ment of cloud services with emphasis on quality assurance
[13]. Current practice [17,37] focuses on the use of reg-
istry and repository systems combined with purpose-built
software to check the conformance of services with relevant
policies [14]. Amajor weakness in these systems is failure to
achieve a separation of concerns between defining policies
and evaluating data against these policies [13,14]. This has
a number of negative repercussions such as lack of porta-
bility, inability to reason about the effectiveness of policies
and lack of explicit representation of policy interrelations.
Several works have attempted to address these shortcomings
[8,12,19,25]. These generally employ bespoke languages,
and ontologies, for capturing policies; the policies are then
enforced at run-time typically through the use of a reference

123



456 SOCA (2017) 11:445–458

monitor. Closer to our approach are the works in [12,19,25]
which embrace Semantic Web representations for capturing
the knowledge encoded in policies.

In [25], the authors present KAoS—a general-purpose
policy management framework which exhibits a three-
layered architecture comprising: (i) a human interface layer,
which provides a graphical interface for policy specification;
(ii) a policy management layer, which uses OWL [33] to
encode and manage policy-related knowledge; (iii) a pol-
icy monitoring and enforcement layer, which automatically
grounds OWL policies to a programmatic format suitable
for policy monitoring and enforcement. The latter layer is
introduced in order to render the policy monitoring and
enforcement processes more efficient. Although a seminal
work for its time, the KAoS approach exhibits a number
of limitations. Firstly, the programmatic format promoted
by KAoS precludes the performance of any updates to the
policies dynamically, i.e. during system execution, as such
updates would naturally require the (updated) policies to be
re-compiled to the programmatic format. It also precludes
the performance of semantic inferencing during policy mon-
itoring and enforcement which invalidates, to a degree, the
reason for embracing SemanticWeb technologies for captur-
ing the knowledge that resides in policies in the first place.

In [12], the authors propose Rei—a policy specifica-
tion language expressed in OWL-Lite [33]. Rei allows the
declarative representation of a wide range of policies which
are purportedly understandable—hence enforceable—by
autonomous entities in open, dynamic environments. InRei, a
policy comprises a list of rules that take the formofOWL-Lite
properties, as well as a set of contextual attributes (modelled
as ontological concepts) that define the underlying policy
domain. Rei uses variables in order to express policy rules
in which no concrete values are provided for the contextual
attributes—e.g. rules of the form ‘service s is allowed to
access object o only when s is located in the same area as
another subject s’. Rei resorts to the use of placeholders as
in rule-based programming languages for the definition of
such variables. This, however, essentially prevents Rei from
exploiting the full inferencing potential of OWL as policy
rules are expressed in a formalism that is alien to OWL. In
contrast, variables could have instead beenmodelled in terms
of OWL’s anonymous individuals [33].

In [19], POLICYTAB is proposed for supporting trust
negotiation in Semantic Web environments. POLICYTAB
advocates an ontology-based approach for describing poli-
cies that drive a trust negotiation process aiming at providing
controlled access to web resources. Nevertheless, it does not
provide any mechanisms for strengthening the resilience of
services by checking their conformance against pre-specified
policies.

By drawing upon ontological representations of policies,
the works presented in [12,19,25] achieve a separation of

concerns that disentangles policies from the actual codeof the
mechanisms through which these policies are enforced. Nev-
ertheless, as alreadymentioned, theseworks rely on bespoke,
non-standards-based, ontologies which generally lack the
expressivity for addressing holistically the business details
that characterise web and cloud services. In addition, they
hinder multi-party interactions and knowledge sharing and
thus reduce the interoperability, reusability and generality of
the policies. These limitations have essentially inspired and
motivated the work presented in this paper which, by draw-
ing upon theLinkedUSDL framework,manages to overcome
these shortcomings.

10 Conclusions and future work

We have presented the SC3, a mechanism that strengthens
the resilience of services in cloud-based VEs by offering the
following capabilities with respect to the Quality Assurance
Service Brokerage dimension of CSB:

1. Evaluation of service conformance with pre-specified
BPs concerning the business aspects of service delivery.

2. Evaluation of thewell-formedness of theBPs themselves.
3. Performanceof service lifecyclemanagement in ageneric

and policy-based manner.

The SC3 is underpinned by an ontological representation
of BPs and SDs, one which is based on Linked USDL
and promotes a clear separation of concerns between policy
definition and policy enforcement, bringing about the fol-
lowing seminal advantages: (i) it keeps the SC3 generic and
orthogonal to the underlying cloud delivery platform; (ii) it
enables generic reasoning about the well-formedness, hence
the effectiveness, of the policies; (iii) it enables the identifi-
cation of inter-policy relations; (iv) it facilitates the overall
governance of policies.

The SC3 has been successfully used, in the frame of EU’s
Broker@Cloud project [2], for evaluating the quality ofCRM
services that are on-boarded on an existing commercial cloud
application platform—namely the CAS Open [4] platform.

The BP evaluation mechanism offered by the SC3 (see
Sect. 6) is currently only capable of performing structural
checks that determine whether a BP abides by the ontologi-
cal framework outlined in Sect. 3. However, it is not capable
of assessing whether a BP encompasses all those attributes
that are necessary in order to sufficiently specify the business
aspects of service delivery that are deemed relevant to a par-
ticular cloud platform. For example, it is not able to assess
whether a BP correctly constrains each and every attribute
of Table 1. Clearly, this is a seminal capability that generally
increases our assurance on the quality of the services utilised
by cloud-based VEs.

123



SOCA (2017) 11:445–458 457

In order to overcome this limitation, as part of future work
we intend to extend our ontological representation of BPs
by devising a suitable ontological framework, a higher-level
ontology (HLO), which will enable the generic expression
of a set of constraints regarding the necessary attributes that
any BP must encompass. For instance, going back to the
example of Sect. 2, such constraints may insist that any BP
must specify exactly one value, or range of values, for each of
the attributes of Table 1 and that these values, or value ranges,
must fall within the value ranges specified in Table 1; any BP
not bearing these characteristics is not considered a correct
policy. The HLO will thus constitute a schema, essentially a
meta-policy, with which any BP must conform.

The HLOwill be formulated in the OWL 2Web Ontology
Language [35] which provides the required expressivity for
articulating the aforementioned constraints. For example, it
allows the expression of cardinality constraints that are nec-
essary in determining all those attributes that are deemed
compulsory for a BP. The HLO is anticipated to pave the
way for a series of correctness checks that are performed
automatically by a policy evaluation mechanism with ref-
erence to the constraints that are encoded in the HLO; this
mechanism is intended to replace the current BP evaluation
mechanism offered by the SC3. Moreover, we intend to con-
struct an editor through which a user will be able to prime the
HLO with appropriate constraints for a particular domain of
application.

Acknowledgements This research was funded by the EU 7th
Framework Programme under the Broker@Cloud project
(www.broker-cloud.eu), Grant Agreement No. 328392.

References

1. Apache Jena. https://jena.apache.org/
2. Broker@Cloud project: enabling continuous quality assurance and

optimisation for cloud brokers. http://www.broker-cloud.eu/
3. Cardoso J, Pedrinaci C, Leidig T, Rupino P, De Leenheer P (2013)

Foundations of open semantic service networks. Int J Serv Sci
Manag Eng Technol 4(2):1–16. doi:10.4018/jssmet.2013040101

4. CAS CRM. http://www.cas-crm.com/
5. Cretu LG (2012) Cloud-based virtual organization engineering.

Informatica Econ 16(1):98–109
6. D30.3 specification of interfaces for enabling brokerage in enter-

prise cloud service delivery platforms. http://www.broker-cloud.
eu/documents (2014)

7. D40.1 methods and mechanisms for cloud service governance and
quality control. http://www.broker-cloud.eu/documents (2014).
Broker@Cloud Project Deliverable

8. Damianou N, Dulay N, Lupu E, Sloman M (2001) The ponder
policy specification language. In: Proceedings of the international
workshop on policies for distributed systems and networks, POL-
ICY ’01, Springer, London, UK, UK, pp 18–38. http://dl.acm.org/
citation.cfm?id=646962.712108

9. Fiksel J (2007) Sustainability and resilience: toward a systems
approach. IEEE Eng Manag Rev 35(3):5–5. doi:10.1109/EMR.
2007.4296420

10. Foster I, Zhao Y, Raicu I, Lu S (2008) Cloud computing and grid
computing 360-degree compared. In: 2008 Grid computing envi-
ronments workshop, pp 1–10. doi:10.1109/GCE.2008.4738445

11. GoodRelations language reference. http://www.heppnetz.de/
ontologies/goodrelations

12. Kagal L, Finin T, Joshi A (2003) A policy language for a perva-
sive computing environment. In: Proceedings POLICY2003. IEEE
4th international workshop on policies for distributed systems and
networks, pp 63–74. doi:10.1109/POLICY.2003.1206958

13. Kourtesis D, Parakakis I, Simons A (2012) Policy-driven gover-
nance in cloud application platforms: an ontology-based approach.
In: Proceedings of the 4th international workshop on ontology-
driven information systems engineering

14. Kourtesis D, Paraskakis I (2011) A registry and repository system
supporting cloud application platform governance. In: Proceedings
of the 2011 international conference on service-oriented comput-
ing, ICSOC’11, Springer, Berlin, Heidelberg (2012), pp 255–256.
doi:10.1007/978-3-642-31875-7_36

15. Linked USDL. http://www.linked-usdl.org/
16. Liu F, Tong J, Mao J, Bohn R, Messina J, Badger L, Leaf D (2011)

NIST Cloud computing reference architecture. Technical report
NIST

17. Marks EA (2008) Service-oriented architecture governance for the
services driven enterprise. Willey, New York

18. McIlraith SG, Son TC, Zeng H (2001) Cloud-based virtual orga-
nization engineering. IEEE Intell Syst 16(2):46–53. doi:10.1109/
5254.920599

19. Nejdl W, Olmedilla D, Winslett M, Zhang CC (2005) Ontology-
based policy specification and management. Springer, Berlin,
Heidelberg, pp 290–302. doi:10.1007/1143105320

20. Oberle D, Barros A, Kylau U, H S (2013) A unified description
language for human to automated services. Inf Syst 38(1):155–
181. doi:10.1016/j.is.2012.06.004

21. Pedrinaci C, Cardoso J, Leidig T Linked USDL (2014) A vocab-
ulary for web-scale service trading. In: Presutti V, d’Amato C,
Gandon F, d’Aquin M, Staab S, Tordai A (eds) The semantic
web: trends and challenges: 11th international conference, ESWC
2014, Anissaras, Crete, Greece, May 25-29, 2014. Proceedings,
pp 68–82. Springer International Publishing, Cham. doi:10.1007/
978-3-319-07443-6_6

22. RDF—semantic web standards. https://www.w3.org/RDF/
23. SKOS simple knowledge organization system. https://www.w3.

org/2004/02/skos/
24. The FOAF project. http://www.foaf-project.org/
25. Uszok A, Bradshaw J, Jeffers R, Johnson M, Tate A, Dalton J,

Aitken S (2004) KAoS policy management for semantic web ser-
vices. IEEE Intell Sys 19(4):32–41

26. Vaquero L, Rodero-Merino L, Caceres J, Lindner M (2008) A
break in the clouds: towards a cloud definition. SIGCOMM Com-
put Commun Rev 39(1):50–55

27. Veloudis S, Friesen A, Paraskakis I, Verginadis Y, Patiniotakis I
(2014) Underpinning a cloud brokerage service framework for
quality assurance and optimization. In: Proceedings of the 2014
IEEE 6th international conference on cloud computing technology
and science, CLOUDCOM ’14, IEEE Computer Society, Wash-
ington, DC, USA, pp 660–663. doi:10.1109/CloudCom.2014.146

28. Veloudis S, Paraskakis I, Friesen A, Verginadis Y, Patiniotakis
I, Rossini A (2014) Continuous quality assurance and optimisa-
tion in cloud-based virtual enterprises. In: Camarinha-Matos LM,
Afsarmanesh H (eds) Collaborative systems for smart networked
environments: 15th IFIP WG 5.5 working conference on virtual
enterprises, PRO-VE 2014, Amsterdam, The Netherlands, October
6–8, 2014. Proceedings, Springer Berlin Heidelberg, pp 621–632.
doi:10.1007/978-3-662-44745-1-61

29. W3C Member Submission (2004) OWL-S semantic markup for
web languages. http://www.w3.org/Submission/OWL-S

123

http://www.broker-cloud.eu
https://jena.apache.org/
http://www.broker-cloud.eu/
http://dx.doi.org/10.4018/jssmet.2013040101
http://www.cas-crm.com/
http://www.broker-cloud.eu/documents
http://www.broker-cloud.eu/documents
http://www.broker-cloud.eu/documents
http://dl.acm.org/citation.cfm?id=646962.712108
http://dl.acm.org/citation.cfm?id=646962.712108
http://dx.doi.org/10.1109/EMR.2007.4296420
http://dx.doi.org/10.1109/EMR.2007.4296420
http://dx.doi.org/10.1109/GCE.2008.4738445
http://www.heppnetz.de/ontologies/goodrelations
http://www.heppnetz.de/ontologies/goodrelations
http://dx.doi.org/10.1109/POLICY.2003.1206958
http://dx.doi.org/10.1007/978-3-642-31875-7_36
http://www.linked-usdl.org/
http://dx.doi.org/10.1109/5254.920599
http://dx.doi.org/10.1109/5254.920599
http://dx.doi.org/10.1007/1143105320
http://dx.doi.org/10.1016/j.is.2012.06.004
http://dx.doi.org/10.1007/978-3-319-07443-6_6
http://dx.doi.org/10.1007/978-3-319-07443-6_6
https://www.w3.org/RDF/
https://www.w3.org/2004/02/skos/
https://www.w3.org/2004/02/skos/
http://www.foaf-project.org/
http://dx.doi.org/10.1109/CloudCom.2014.146
http://dx.doi.org/10.1007/978-3-662-44745-1-61
http://www.w3.org/Submission/OWL-S


458 SOCA (2017) 11:445–458

30. W3CMember Submission (2005)Web servicemodelling ontology
(WSMO). http://www.w3.org/Submission/WSMO

31. W3CMember Submission (2010) SA-REST: semantic annotations
for web resources. http://www.w3.org/Submission/SA-REST

32. W3C recommendation (2001) web services description language
(WSDL) 1.1. http://www.w3.org/TR/wsdl

33. W3C Recommendation (2004) OWL web ontology language ref-
erence. https://www.w3.org/TR/owl-ref/

34. W3C Recommendation (2007) Semantic annotations for WSDL
and XML schema. http://www.w3.org/TR/sawsdl

35. W3C Recommendation (2012) OWL 2 web ontology language.
https://www.w3.org/TR/owl2-overview/

36. WSO2 carbon 100% open source middleware platform. http://
wso2.com/products/carbon/

37. Zhang LJ, Zhou Q (2009) CCOA: cloud computing open archi-
tecture. In: Web services, 2009. ICWS 2009. IEEE international
conference on, IEEE, pp 607–616

123

http://www.w3.org/Submission/WSMO
http://www.w3.org/Submission/SA-REST
http://www.w3.org/TR/wsdl
https://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/sawsdl
https://www.w3.org/TR/owl2-overview/
http://wso2.com/products/carbon/
http://wso2.com/products/carbon/

	Cloud service brokerage: enhancing resilience in virtual enterprises through service governance and quality assurance
	Abstract
	1 Introduction
	2 Motivating scenario
	3 Declarative representation of BPs
	3.1 Declarative representation of BPs and SLOs in Linked USDL SLA
	3.1.1 SLO representation
	3.1.2 Service-level profiles

	3.2 Declarative representation of BPs in Linked USDL core

	4 SC3: BP parsing
	4.1 Conceptual architecture
	4.2 The getBrokerPolicy method

	5 SC3: SD evaluation
	5.1 The completenessCheck method
	5.2 The complianceCheck method

	6 SC3: BP evaluation—the checkBrokerPolicy method
	6.1 Evaluating the SLA portion of a BP
	6.2 Evaluating the core portion of a BP

	7 SC3: service lifecycle management
	7.1 Modelling service deprecation policies
	7.2 Enforcing deprecation policies

	8 Testing the evaluation mechanisms
	9 Related work
	9.1 Service description languages
	9.2 Ontology-driven policy-based cloud service governance and quality control

	10 Conclusions and future work
	Acknowledgements
	References




