
Ontological Templates for Regulating Access to Sensitive Medical Data in the Cloud

Simeon Veloudis and Iraklis Paraskakis

South East European Research Centre (SEERC)

International Faculty of the University of Sheffield,

CITY College

Thessaloniki, Greece

{sveloudis,iparaskakis}@seerc.org

Yiannis Verginadis, Ioannis Patiniotakis, Gregoris

Mentzas

Institute of Communications and Computer Systems

National Technical University of Athens

Athens, Greece

{jverg,ipatini,gmentzas}@mail.ntua.gr

Abstract—By embracing the cloud computing paradigm for

storing and processing electronic medical records (EMRs),

modern healthcare providers are able to realise significant cost

savings. However, relinquishing control of sensitive medical

data by delegating their storage and processing to third-party

cloud providers naturally raises significant security concerns.

One way to alleviate these concerns is to devise appropriate

policies that infuse adequate access controls in cloud services.

Nevertheless, the heterogeneous nature of these services,

coupled with the dynamicity inherent in cloud environments,

hinder the formulation of effective and interoperable policies

that are appropriate for the underlying domain of application.

To this end, this work adopts the ontological templates

proposed in [5] for the representation of access control policies

in the medical sector. By capturing the knowledge that must be

infused into an access control policy, these templates

sufficiently address the needs of the underlying domain of

application in which such a policy is to be enforced; at the

same time, they facilitate developers in infusing adequate

access controls to their cloud applications.

Keywords- Context-aware access control; Electronic medical

records; Security-by-design; Ontologies

I. INTRODUCTION

Modern healthcare providers use electronic medical
records (EMRs) [1] in order to conveniently create, access
and govern medical data and share them with relevant
stakeholders (e.g. patients, insurance companies, medical
researchers, etc.). In current practice, EMRs are typically
stored and processed in dedicated data centres that are
established and maintained by the healthcare providers
themselves. Nevertheless, as the amount of medical data
proliferates, this practice incurs significant costs [2]. A
viable solution for reducing these costs is to migrate the
storage and processing of EMRs to the cloud. The reasons
for this are as follows. Cloud computing enables ubiquitous
access to shared pools of distributed, configurable and
diverse computing resources that range from infrastructural
ones—e.g. storage space for persisting EMRs,
computational power for processing EMRs—to software
resources that offer a multitude of operations on EMRs.
These resources are abstracted as services and delivered to
the healthcare providers remotely, over the Internet, with a
theoretically boundless scalability and in a flexible and cost-
effective pay-per-use manner [3]. Moreover, these resources

are under the control of their third-party providers, hence
absolving healthcare providers from the costs of managing
and maintaining them.

However, relinquishing control of sensitive medical data
by delegating their storage and processing to third-party
cloud providers naturally raises significant security concerns
[4]. Clearly, if healthcare providers are to embrace the cloud
paradigm and benefit from the cost reductions that it brings
about, these concerns must be alleviated. To this end,
appropriate security policies must be infused into the
applications through which EMRs are stored and accessed in
the cloud. For example, access control policies are required
that take into account the inherently dynamic and
unpredictable nature of cloud environments by enabling the
articulation of all those contextual attributes that need to be
satisfied (e.g. the location from which an access request
originates, the time of access, the identity or role of the
subject that issues the request, etc.) in order to grant, or
deny, access to sensitive data.

The work conducted as part of the PaaSword project [5]
offers a suitable framework for the expression of such
policies. PaaSword aspires to provide a security-by-design
solution, essentially a PaaS offering, that facilitates
developers in formulating suitable security policies for
dynamic cloud environments. It proposes a novel approach to
policy modelling, one which formulates policies as
reifications of abstract ontological templates that
semantically capture the knowledge that lurks behind
policies. It therefore advocates a clear separation of concerns
by unravelling the representation of policies from the code
that is employed for enforcing them. This brings about the
following seminal advantages. Firstly, it enables—by virtue
of semantic inferencing—the generation of new knowledge
on the basis of the knowledge already encoded in the
policies, and can therefore successfully tackle situations in
which the contextual information included in an access
request does not necessarily match, at the syntactic level, the
corresponding information encoded in the policies. For
example, if a policy states that a sensitive data object (say o)
is only readable by requests that originate from within a
location A, then a request that originates from a location B
that is contained within A, will be permitted to read o, as
semantic inferencing allows us to determine that the request
indeed originates from location A. This potentially absolves
developers from the burden of having to specify fine-grained

This work has been published in the 3rd CloudSPD Workshop, Proceedings of the 30th International Symposium on Computer-Based

Medical Systems, IEEE CBMS 2017, 22-24 June 2017, Thessaloniki, Greece

policies that cover each possible location within A that a
request may originate from. Secondly, it enables automated
reasoning about potential inter-policy relations such as
subsumption and contradiction, as well as about the well-
formedness of policies, i.e. whether policies incorporate all
required knowledge artefacts for protecting sensitive data in
the cloud.

This paper demonstrates, with the aid of a short case study,
how PaaSword’s ontological templates may facilitate the
process of expressing access control policies for protecting
EMRs in the cloud. The rest of this paper is structured as
follows. Section II outlines the Context Model—an
ontological representation of the various knowledge
artefacts associated with an access control policy, and
Section III outlines our ontological model for access control
policies. Section IV demonstrates, with the aid of a simple
case study, how our ontological models can be used for: (i)
regulating access to EMRs; (ii) performing semantic
inferencing during policy enforcement; (iii) reasoning about
inter-policy relations and about the well-formedness of
policies. Finally, Section V summarises related work and
Section VI presents conclusions and future work.

II. MODELLING CONTEXT

The Context Model (CM) proposed in [6] provides an
ontological model for the representation of the various
knowledge artefacts that lurk behind an access control
policy. Fig. 1 depicts a simplified view of the CM that
includes only the concepts (classes) considered in this work.
At the core of the CM is the class
pcm:SecurityContextElement. This class encompasses
concepts that represent the various contextual attributes that
may be associated with an access request; these concepts
are depicted in the shaded area of Fig. 1 and are further
outlined in Table II.

Now, an access request takes the form of an instance of
the class pcm:Request; it is associated with the contextual
attributes that characterise it through the object property
pcm:hasAttribute (see Fig. 1). The same object property
is used for associating an access request with its subjects
and objects. A subject of a request is any entity (human or
machine) whose contextual attributes must be taken into
account for deciding whether to permit, or deny, the request;

an object of a request is a resource (e.g. relational database
table, non-relational data store, file, etc.) targeted by the
request. Subjects are represented as instances of the class
pcm:Subject; they are associated with the contextual
attributes that characterise them through the object property
pcm:associatedWith (see Fig. 1). Objects are

represented as instances of the class pcm:Object; they too
are associated with the contextual attributes that characterise
them through the object property pcm:associatedWith.

Fig. 1 also includes the concept pcm:Handler whose
instances represent dedicated software components—the so-
called handlers—that interface with hardware sensors and
provide the current values of the contextual attributes
attached to a request (or to the subjects or objects of a
request). Handlers may include, for example, authentication
handlers, physical location resolution handlers, IP address to
physical location handlers, etc. A contextual attribute is
associated with its corresponding handler(s) through the
property pcm:hasHandler; the same property is used for
associating subjects with handlers (for example,
authentication handlers that provide the identity of subjects).

III. MODELLING ACCESS CONTROL POLICIES

We consider Attribute-based Access Control (ABAC)
policies which, due to their inherent generality stemming
from their reliance on the generic concept of an attribute,
are deemed suitable for dynamic and heterogeneous cloud
environments [7]. Following the XACML standard [8], each
ABAC policy comprises one or more ABAC rules. An
ABAC rule is associated with a set of relevant knowledge
artefacts, or attributes, whose values need to be taken into

Figure 1: Context Model (namespaces omitted to reduce clutter)

TABLE I: SECURITY CONTEXT ELEMENT CONCEPTS

pcm:

Location

An instance of this class describes a physical or a
network location that characterises any entity
whose whereabouts must be considered for
deciding whether to permit, or deny, an access
request. It includes the classes

pcm:PhysicalLocation and

pcm:NetworkLocation. The former

comprises the concepts pcm:Address,

pcm:Point, pcm:Area and

pcm:AbstractLocation. Instances of

pcm:Point and pcm:Area are further
associated, through suitable data properties, with
their corresponding geographical coordinates (not
shown in Fig. 1). The class

pcm:AbstractLocation bundles together
such locations as particular buildings, offices,
medical laboratories, etc. Network locations are
not considered in this work and hence the class

pcm:NetworkLocation is not further
analysed here—the interested reader is referred to
[6] for more details.

pcm:

DateTime

An instance of this class describes the specific
chronological point or time interval at which an
access request is received.

pcm:

Connectivity

Captures information pertaining to the connection
or the type of device (e.g. desktop, smart phone,
tablet, etc.) used by an entity for accessing
sensitive data. Such information is not considered
in this work and hence this class is not further
analysed here—the interested reader is referred to
[6] for more details.

account when deciding whether to permit, or deny, an
access request. These attributes are described abstractly in
terms of the concepts introduced by the CM.

In the ontological representation proposed in [7] and
depicted in Fig. 2, an ABAC rule takes the form of an
instance of the class pac:ABACRule; the knowledge
artefacts attached to the rule are described generically in
terms of the depicted ABAC rule template. More
specifically, each class of this template identifies a
particular knowledge artefact, whilst each object property
attaches such a knowledge artefact to the rule; Table III
briefly elaborates on the concepts and properties of this
template; in the remaining of this section we focus on a
particular concept, namely that of a context expression.

A context expression is represented as an instance of the
class pac:ContextExpression (see Fig. 3). The various
attributes that it binds, i.e. its parameters, are represented as
instances of the CM—in particular, as instances of the
subclasses of the pcm:SecurityContextElement class
(see Table I). These parameters are associated with the
context expression through the object property
pac:hasParameter; they may be combined with each
other through the usual logical connectives; to this end, the
classes pac:XContextExpression (where X stands for

one of AND, OR, XOR, NOT) are introduced as subclasses of

the pac:ContextExpression class (see Fig. 3). Their
intended meaning is as follows: if a context expression is
represented by an instance of the class say
pac:ANDContextExpression, its parameters, i.e. the
contextual attributes associated with it through the
pac:hasParameter property, are interpreted as being
pairwise conjuncted; analogous interpretations apply to the
rest of the subclasses of pac:ContextExpression.

A context expression may be defined recursively, in
terms of one or more other context expressions.
Ontologically, this is captured by including the class
pac:ContextExpression in both the domain and the

range of the object property pac:hasParameter (see Fig.

3). The pac:refersTo property depicted in Fig. 3 attaches
a context expression to the entity (either subject, object or
access request) that it refers to.

IV. A SIMPLE CASE STUDY SCENARIO

We next demonstrate how access control policies devised
to protect EMRs can be expressed as reifications of the
ontological representation of ABAC rules outlined above.
We then demonstrate how this ontological representation
can form the basis for performing semantic inferencing—
hence generating new knowledge—during policy
enforcement, as well as for identifying inter-policy relations
and for checking the well-formedness of ABAC rules.

Suppose a fictitious healthcare provider, call it HCPx, that
is interested in migrating to the cloud the EMRs that it
currently hosts on proprietary data servers. We assume that
the EMRs are persisted in the cloud in a relational database
table identified as HCPx_EMR. Α number of access control
policies for safeguarding HCPx_EMR are required. These
policies generally reflect HCPx’s stance towards security
and are also assumed to be in line with relevant
governmental rules and regulations (e.g. the EU’s directive
2016/680 regarding the protection of natural persons with
regard to the processing of personal data [9]). Let us initially

Figure 2: ABAC Policy Model

TABLE II: GENERIC KNOWLEDGE ARTEFACTS ASSOCIATED WITH THE ABAC RULE TEMPLATE

Knowledge

artefact
Descriptions Ontological representation

Controlled
object

The resource on which access is requested. Instance of the class pcm:Object (see Fig. 1).

Authorisation The kind of authorisation granted (either ‘permit’ or ‘deny’)
Instance of the class pac:Authorisation (see Fig. 2) which

comprises the individuals pac:permit and pac:deny.

Action
The action (either ‘read’, ‘write’ or ‘read/write) to be performed
on the controlled object

Instance of the class ppm:DataPermission (see Fig. 2)

which comprises the individuals ppm:read and pac:write.

Actor The subject issuing an access request Instance of the class pcm:Subject (see Fig. 1).

Context
expression

A propositional logic expression that must be satisfied in order to
permit (or deny) an access request; it binds together a number of
contextual attributes expressed as instances of the CM

Instance of the class pac:ContextExpression (see Fig. 3).

Figure 3: Context Expressions Ontological Template

assume a simple policy comprising the rule shown in
TABLE III and let us demonstrate how this rule is expressed
as a reification of the ontological representation outlined in
Section III.

A. Modelling HCPx Policies

Table IV specifies (using the RDF Turtle notation [10])

the rule of Table III. The rule itself is represented by the

instance :Rule1 of the class pac:ABACRule; the subject of

the rule is represented by the instance :s which is further

associated through the property pac:hasRole with the role

‘doctor’. pac:hasRole is introduced by the CM in order to

associate subjects (i.e. instances of the class pcm:subject)

with roles (i.e. instances of the class usdl-core:Role—a

class adopted from the usdl-core ontological framework [11]

for capturing the various roles that a subject may assume).

The authorisation that the rule grants is represented by the

instance pac:permit (see Table II), whereas the action that

the rule permits is represented by the instance pac:write.

Finally, the context expression of the rule is represented by

the instance :expr1 and is associated with two parameters:

the instance :bldg1 which belongs to the class

pcm:AbstractLocation and which represents ‘building1’

(see Table III), and the instance :workingHours which

belongs to the class pcm:DateTimeInterval and which is

delimited, through the data properties pcm:hasBeginning

and pcm:hasEnd.

B. Semantic Inferencing During Policy Enforcement

The concepts and properties introduced by the CM (see
Fig. 1) may be exploited during the evaluation of an access
request in order to semantically infer the context that is
associated with the request (or with the subject and/or object
of the request). Suppose, for example, that a subject entity
represented by the instance :s and acting in the capacity of

the role ‘doctor’ issues an access request to the HCPx_EMR
table; the request is assumed to be issued from ‘room1001’
which is located on the 1st floor of ‘building1’. Note that
this HCPx-specific location information must be reflected in
the CM: we assume that during the process of priming the
CM—a process that aims at rendering the CM suitable for
the needs of HCPx—the following concepts are introduced
as subclasses of the class pcm:AbstractLocation (see

Fig. 4): :HCPx_Room, :HCPx_Floor, :HCPx_Building;

moreover, the individuals :Room_1001, :Floor_01 and

:Bldg_01 are also defined as instances of these classes and
interconnected through the object property
pcm:associatedWith (see Fig. 4 and Table V). In
addition, we assume that, based on the available handlers,
the system is capable of collecting location information only
at the level of rooms (and not at the level of buildings or
floors).

Once the request issued by the subject :s is intercepted

with the resolved location for :s being reported as

‘room1001’, a number of facts regarding :s’s location can
be semantically inferred automatically, through the use of
an OWL 2 DL reasoner such as Pellet [12]. This inferencing
is based on the transitivity of the object property
pcm:associatedWith, as well as of the subclass relation.

In particular, from the premise that :s is associated with,

and therefore located in, ‘room1001’ we can infer that :s is
also associated with, and therefore located on, ‘floor01’
(since ‘room1001’ is associated with ‘floor01’) and
similarly that :s is also associated with, and therefore
located in, ‘building1’ (since ‘floor01’ is associated with
‘building1’). These inferred facts essentially render the
evaluation, hence the application, of the access control
policy feasible, as the system is able to determine that the
requestor is actually located in ‘building1’, even though the
intercepted contextual information reports that the requestor
is located in a room.

C. Determining Inter-Policy Relations

One of the main advantages brought about by expressing
access control policies declaratively, in terms of the
ontological model outlined in Section III, is the ability to
automatically reason, through the use of a DL reasoner,
about inter-policy relations such as subsumption and

TABLE III: HCPX POLICY RULE

Rule 1
HCPx_EMR can be written by doctors during working

hours and only from within ‘building1’a.

a. ‘building1’ is assumed to belong to the premises of HCPx

Figure 4: Semantic Inferencing at the level of the CM

TABLE IV: ABAC POLICY RULE 1

:Rule1 a pac:ABACRule;

 pac:hasCtrldObject :HCPx_EMR;

 pac:hasActor :s;

pac:hasAuthorisation pac:permit;

pac:hasAction pac:write;

pac:hasContextExpression :expr1.

:HCPx_EMR a pcm:Object.

:s a pcm:Subject;

 pac:hasRole :doctor.

:doctor a usdl-core:Role.

:expr1 a pac:ANDContextExpression;

pac:hasParameter :bldg1;

pac:hasParameter :workingHours

pac:refersTo :s;

:bldg1 a pcm:AbstractLocation;

:workingHours a pcm:DateTimeInterval;

pcm:hasBeginning “08:00”^^xsd:dateTime;

pcm:hasEnd “16:00”^^xsd:dateTime;

contradiction.
With regard to policy subsumption, this reasoning is

based on semantic inferencing that takes place either at the

level of the CM, such as the inferencing outlined in Section

IV.B, or at the level of the actual ABAC rule model.

Regarding inferencing at the level of the CM, suppose Rule

2 of Table VI (it is assumed that all doctor offices are

located on ‘floor01’ of ‘building1’). An inferencing process

analogous to the one outlined in Section IV.B allows us to

conclude that Rule 2 is, in fact, a special case of Rule 1 of

Table III: any request that is permitted by Rule 2 is also

permitted by Rule 1. It is therefore concluded that Rule 2 is

subsumed by Rule 1. In this respect, it would be

meaningless to retain both rules in the rule repository: either

Rule 2 is specified by mistake and should be dropped from

the system, or Rule 2 is intended as a replacement of Rule 1

(in an attempt, for example, to introduce a more restrictive

regime) in which case Rule 1 should be retired from the

system.
Regarding inferencing at the level of the ABAC rule

model, suppose Rule 3 of Table VI. This rule is represented
ontologically as shown in Table VII. We observe that, with
the exception of the context expression, all knowledge
artefacts associated with the representation of Rule 3 (i.e.
with the instance :Rule3) are identical to the ones
associated with Rule 1 (see Table IV). We also observe that
the context expression of Rule 3 is associated with the same
parameters as the ones of the context expression of Rule 1;
in addition, these parameters refer in both context
expressions to the same entity—the subject instance :s.

Nevertheless, the parameters of :expr3 are logically

disjuncted as opposed to the ones of :expr1 which are

logically conjuncted. This clearly renders :expr3 a more

general expression than :expr1 and hence inferable from

:expr1. In other words, any request that is permitted by
Rule 1 is inevitably also permitted by Rule 3. It is therefore
concluded that Rule 1 is subsumed by Rule 3.

With regard to policy contradiction, two ABAC rules are
considered contradicting when they are associated with

identical knowledge artefacts but the one yields a ‘permit’
decision whereas the other one yields a ‘deny’ decision.
Clearly, a DL reasoner can be employed to detect whether
two ABAC rules are contradicting.

D. Determining the Well-Formedness of Rules

Another crucial advantage brought about by expressing
access control policies declaratively, in terms of the
ontological model outlined in Section III, is the ability to
automatically reason about the well-formedness of the
policy rules. This reasoning is performed by a DL reasoner
through a series of automated checks that aim at assessing
the well-formedness, hence the validity, of a policy with
respect to a higher-level ontology (HLO) that captures a set
of meta-policies that essentially articulate all those
ingredients that a policy rule may, or may not, comprise.
These correctness checks are clearly of utmost importance
for they increase assurance on the effectiveness of the
policies. For example, in the case of HCPx policies, we
might be interested in specifying constraints such as the
ones outlined in Table VIII. These constraints are
ontologically expressed in the HLO and enforced each time
a new policy rule is created or an existing policy rule is
updated.

V. RELATED WORK

A number of approaches have been proposed for the
representation of policies [13—15]. These generally rely on
the expressivity of OWL [16] for capturing the various
knowledge artefacts that underpin the definition of a policy.
In [13] KAoS is presented—a generic framework offering:
(i) a human interface layer for the expression of policies; (ii)
a policy management layer that is capable of identifying and
resolving conflicting policies; (iii) a monitoring and
enforcement layer that encodes policies in a suitable
programmatic format for enforcing them. Contextual
conditions that must be taken into account in access control
decisions are expressed as OWL property restrictions. A
main drawback of the KAoS approach is the fact that its
reliance on OWL raises concerns about the efficiency with

TABLE V: ABAC POLICY

:Room_1001 a :HCPx_Room;

pcm:associatedWith :Floor_01.

:Floor_01 a :HCPx_Floor;

pcm:associatedWith :Building_01.

:Building_01 a :HCPx_Building.

:HCPx_Room rdfs:subClassOf

pcm:AbstractLocation.

:HCPx_Floor rdfs:subClassOf

pcm:AbstractLocation.

HCPx_Building rdfs:subClassOf

pcm:AbstractLocation.

TABLE VI: HCPX ADDITIONAL POLICY RULES

Rule 2
HCPx_EMR can be written by doctors during working hours

and only from ‘floor01’.

Rule 3
HCPx_EMR can be written by doctors during working hours

or from within ‘building1’.

TABLE VII: ABAC POLICY RULE 3

:Rule3 a pac:ABACRule;

 pac:hasCtrldObject :HCPx_EMR;

 pac:hasActor :s;

pac:hasAuthorisation pac:permit;

pac:hasAction pac:write

pac:hasContextExpression :expr3.

:expr3 a pac:ORContextExpression;

pac:hasParameter :bldg1;

pac:hasParameter :workingHours

pac:refersTo :s;

TABLE VIII: HCPX ADDITIONAL POLICY RULES

Each policy rule must be associated with exactly one subject, exactly

one controlled object, exactly one kind of authorisation (either permit

or deny), exactly one type of action (either read or write) and at most

one context expression.

Any location attribute that forms a parameter of a context expression

must be an instance of the class HCPx_Building (see Fig. 4).

which semantic inferencing can be performed dynamically,
when policies are evaluated against incoming access
requests. In order to alleviate these concerns, KAoS encodes
policies in a programmatic format. Nevertheless, this
precludes the performance of any updates to the policies
dynamically, during system execution, as such updates
would naturally require the (updated) policies to be re-
compiled to the programmatic format.

In [14] Rei is proposed – a framework for specifying,
analysing and reasoning about policies. Rei adopts OWL-
Lite [17] for the semantic specification of policies. A policy
comprises a list of rules that take the form of OWL
properties, as well as a context that defines the underlying
policy domain. Rei provides a suitable ontological
abstraction for the representation of desirable behaviours that
are exhibited by autonomous entities. Rei resorts to the use
of placeholders as in rule-based programming languages for
the definition of variables. This, however, essentially
prevents Rei from exploiting the full inferencing potential of
OWL as policy rules are expressed in a formalism that is
alien to OWL. In contrast, variables could have instead been
modelled in terms of OWL’s anonymous individuals.

In [15] the authors propose POLICYTAB for facilitating
trust negotiation in Semantic Web environments.
POLICYTAB adopts ontologies for the representation of
policies that guide a trust negotiation process ultimately
aiming at granting, or denying, access to sensitive Web
resources. These policies essentially specify the credentials
that an entity must possess in order to carry out an action on
a sensitive resource that is under the ownership of another
entity. Nevertheless, no attempt is made to model the context
associated with access requests.

On a different note, the markup languages [18,8,19]
provide declarative formalisms for the specification of
policies. Nevertheless, they do not provide any means of
capturing the knowledge that dwells in policies.

VI. CONCLUSIONS

This paper has proposed a novel approach for modelling
access control policy rules. We argue that our approach
facilitates developers in expressing effective policies which
give rise to security controls appropriate for dynamic and
heterogeneous cloud environments. The approach is
founded on the basis of an ontological template that captures
a wide range of contextual attributes that must be taken into
account during the evaluation of a policy. One of the virtues
of the proposed ontological template is that it enables the
evaluation of a request against an access control policy to be
performed, and reasoned about, at the semantic level;
furthermore, our ontological template paves the way for the
performance of automated reasoning about potential inter-
policy relations, such as the identification of subsuming or
contradicting policies, as well as about the well-formedness,
hence the effectiveness, of the policies.

Currently, we are in the process of finalising the
mechanism that is able to reason about inter-policy
relations. A policy validator that assesses the well-
formedness of policies against the constraints expressed in
the HLO is also being finalised.

ACKNOWLEDGEMENTS

The research leading to these results has received
funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No
644814.

REFERENCES

[1] C. DesRoches et al., “Electronic health records in ambulatory
care: a national survey of physicians,” New England Journal
of Medicine, 359(1):50–60, 2008.

[2] R. Wu, G. J. Ahn and H. Hu, “Secure sharing of electronic
health records in clouds,” 8th International Conference on
Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), Pittsburgh, PA, 2012, pp.
711-718.

[3] Cloud Computing Reference Architecture, National Institute
of Standards and Technology (NIST), 2011.

[4] R. Zhang and L. Liu. Security models and requirements for
healthcare application clouds. In Proceedings of 3rd IEEE
International Conference on Cloud Computing, pages 268–
275. IEEE, 2010.

[5] PaaSword project, http://www.paasword.eu/.

[6] PaaSword Deliverable 2.1.
https://www.paasword.eu/deliverables/.

[7] Simeon Veloudis and Iraklis Paraskakis, “Defining an
Ontological Framework for Modelling Policies in Cloud
Environments,” In Proceedings of 8th IEEE International
Conference on Cloud Computing Technology and Science
(CloudCom'16, 2016, in press.

[8] eXtensible Access Control Markup Language (XACML)
Version 3.0. 22 January 2013. OASIS Standard.
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.html.

[9] EU 2016/680. http://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=CELEX%3A32016L0680

[10] RDF 1.1 Turtle, 2014. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

[11] Linked USDL, http://www.linked-usdl.org/.

[12] Pellet, http://clarkparsia.com/pellet.

[13] Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A.,
Dalton, J., and Aitken, S.: KAoS Policy Management for
Semantic Web Services. IEEE Intel. Sys. 19, 4, 32—41, 2004.

[14] Kagal, L., Finin, T., Joshi, A.: A Policy Language for a
Pervasive Computing Environment. In 4th IEEE Int.
Workshop on Policies for Distributed Systems and Networks
(POLICY '03), pp. 63--74, IEEE Computer Society,
Washington, DC, 2003

[15] Nejdl, W., Olmedilla, D., Winslett, M, Zhang. C.C.:
Ontology-Based policy specification and management. In
Gómez-Pérez, A. and Euzenat, J. (eds.) ESWC'05, pp. 290-
302, Springer-Verlag, Berlin, Heidelberg, 2005.

[16] OWL 2 Web Ontology Language Primer (2nd Edition),
https://www.w3.org/TR/owl2-primer/.

[17] OWL Web Ontology Language Overview,
https://www.w3.org/TR/2004/REC-owl-features-
20040210/#s2.1.

[18] Specification of Deliberation RuleML 1.01,
http://wiki.ruleml.org/index.php/Specification_of_Deliberatio
n_RuleML_1.01.

[19] Security Assertions Markup Language (SAML) Version 2.0.
Technical Overview, https://www.oasis-
open.org/committees/download.php/27819/sstc-saml-tech-
overview-2.0-cd-02.pdf.

