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Abstract—By embracing the cloud computing paradigm for 

storing and processing electronic medical records (EMRs), 

modern healthcare providers are able to realise significant cost 

savings. However, relinquishing control of sensitive medical 

data by delegating their storage and processing to third-party 

cloud providers naturally raises significant security concerns. 

One way to alleviate these concerns is to devise appropriate 

policies that infuse adequate access controls in cloud services. 

Nevertheless, the heterogeneous nature of these services, 

coupled with the dynamicity inherent in cloud environments, 

hinder the formulation of effective and interoperable policies 

that are appropriate for the underlying domain of application. 

To this end, this work adopts the ontological templates 

proposed in [5] for the representation of access control policies 

in the medical sector. By capturing the knowledge that must be 

infused into an access control policy, these templates 

sufficiently address the needs of the underlying domain of 

application in which such a policy is to be enforced; at the 

same time, they facilitate developers in infusing adequate 

access controls to their cloud applications. 

Keywords- Context-aware access control; Electronic medical 

records; Security-by-design; Ontologies 

I.  INTRODUCTION 

Modern healthcare providers use electronic medical 
records (EMRs) [1] in order to conveniently create, access 
and govern medical data and share them with relevant 
stakeholders (e.g. patients, insurance companies, medical 
researchers, etc.). In current practice, EMRs are typically 
stored and processed in dedicated data centres that are 
established and maintained by the healthcare providers 
themselves. Nevertheless, as the amount of medical data 
proliferates, this practice incurs significant costs [2]. A 
viable solution for reducing these costs is to migrate the 
storage and processing of EMRs to the cloud. The reasons 
for this are as follows. Cloud computing enables ubiquitous 
access to shared pools of distributed, configurable and 
diverse computing resources that range from infrastructural 
ones—e.g. storage space for persisting EMRs, 
computational power for processing EMRs—to software 
resources that offer a multitude of operations on EMRs. 
These resources are abstracted as services and delivered to 
the healthcare providers remotely, over the Internet, with a 
theoretically boundless scalability and in a flexible and cost-
effective pay-per-use manner [3]. Moreover, these resources 

are under the control of their third-party providers, hence 
absolving healthcare providers from the costs of managing 
and maintaining them. 

However, relinquishing control of sensitive medical data 
by delegating their storage and processing to third-party 
cloud providers naturally raises significant security concerns 
[4]. Clearly, if healthcare providers are to embrace the cloud 
paradigm and benefit from the cost reductions that it brings 
about, these concerns must be alleviated. To this end, 
appropriate security policies must be infused into the 
applications through which EMRs are stored and accessed in 
the cloud. For example, access control policies are required 
that take into account the inherently dynamic and 
unpredictable nature of cloud environments by enabling the 
articulation of all those contextual attributes that need to be 
satisfied (e.g. the location from which an access request 
originates, the time of access, the identity or role of the 
subject that issues the request, etc.) in order to grant, or 
deny, access to sensitive data. 

The work conducted as part of the PaaSword project [5] 
offers a suitable framework for the expression of such 
policies. PaaSword aspires to provide a security-by-design 
solution, essentially a PaaS offering, that facilitates 
developers in formulating suitable security policies for 
dynamic cloud environments. It proposes a novel approach to 
policy modelling, one which formulates policies as 
reifications of abstract ontological templates that 
semantically capture the knowledge that lurks behind 
policies. It therefore advocates a clear separation of concerns 
by unravelling the representation of policies from the code 
that is employed for enforcing them. This brings about the 
following seminal advantages. Firstly, it enables—by virtue 
of semantic inferencing—the generation of new knowledge 
on the basis of the knowledge already encoded in the 
policies, and can therefore successfully tackle situations in 
which the contextual information included in an access 
request does not necessarily match, at the syntactic level, the 
corresponding information encoded in the policies. For 
example, if a policy states that a sensitive data object (say o) 
is only readable by requests that originate from within a 
location A, then a request that originates from a location B 
that is contained within A, will be permitted to read o, as 
semantic inferencing allows us to determine that the request 
indeed originates from location A. This potentially absolves 
developers from the burden of having to specify fine-grained 
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policies that cover each possible location within A that a 
request may originate from. Secondly, it enables automated 
reasoning about potential inter-policy relations such as 
subsumption and contradiction, as well as about the well-
formedness of policies, i.e. whether policies incorporate all 
required knowledge artefacts for protecting sensitive data in 
the cloud. 

This paper demonstrates, with the aid of a short case study, 
how PaaSword’s ontological templates may facilitate the 
process of expressing access control policies for protecting 
EMRs in the cloud. The rest of this paper is structured as 
follows. Section II outlines the Context Model—an 
ontological representation of the various knowledge 
artefacts associated with an access control policy, and 
Section III outlines our ontological model for access control 
policies. Section IV demonstrates, with the aid of a simple 
case study, how our ontological models can be used for: (i) 
regulating access to EMRs; (ii) performing semantic 
inferencing during policy enforcement; (iii) reasoning about 
inter-policy relations and about the well-formedness of 
policies. Finally, Section V summarises related work and 
Section VI presents conclusions and future work.  

II.  MODELLING CONTEXT 

The Context Model (CM) proposed in [6] provides an 
ontological model for the representation of the various 
knowledge artefacts that lurk behind an access control 
policy. Fig. 1 depicts a simplified view of the CM that 
includes only the concepts (classes) considered in this work. 
At the core of the CM is the class 
pcm:SecurityContextElement. This class encompasses 
concepts that represent the various contextual attributes that 
may be associated with an access request; these concepts 
are depicted in the shaded area of Fig. 1 and are further 
outlined in Table II.  

Now, an access request takes the form of an instance of 
the class pcm:Request; it is associated with the contextual 
attributes that characterise it through the object property 
pcm:hasAttribute (see Fig. 1). The same object property 
is used for associating an access request with its subjects 
and objects. A subject of a request is any entity (human or 
machine) whose contextual attributes must be taken into 
account for deciding whether to permit, or deny, the request; 

an object of a request is a resource (e.g. relational database 
table, non-relational data store, file, etc.) targeted by the 
request. Subjects are represented as instances of the class 
pcm:Subject; they are associated with the contextual 
attributes that characterise them through the object property 
pcm:associatedWith (see Fig. 1). Objects are 

represented as instances of the class pcm:Object; they too 
are associated with the contextual attributes that characterise 
them through the object property pcm:associatedWith. 

Fig. 1 also includes the concept pcm:Handler whose 
instances represent dedicated software components—the so-
called handlers—that interface with hardware sensors and 
provide the current values of the contextual attributes 
attached to a request (or to the subjects or objects of a 
request). Handlers may include, for example, authentication 
handlers, physical location resolution handlers, IP address to 
physical location handlers, etc. A contextual attribute is 
associated with its corresponding handler(s) through the 
property pcm:hasHandler; the same property is used for 
associating subjects with handlers (for example, 
authentication handlers that provide the identity of subjects).  

III. MODELLING ACCESS CONTROL POLICIES 

We consider Attribute-based Access Control (ABAC) 
policies which, due to their inherent generality stemming 
from their reliance on the generic concept of an attribute, 
are deemed suitable for dynamic and heterogeneous cloud 
environments [7]. Following the XACML standard [8], each 
ABAC policy comprises one or more ABAC rules. An 
ABAC rule is associated with a set of relevant knowledge 
artefacts, or attributes, whose values need to be taken into 

 
Figure 1: Context Model (namespaces omitted to reduce clutter) 

TABLE I: SECURITY CONTEXT ELEMENT CONCEPTS 

pcm: 

Location 

An instance of this class describes a physical or a 
network location that characterises any entity 
whose whereabouts must be considered for 
deciding whether to permit, or deny, an access 
request. It includes the classes 

pcm:PhysicalLocation and 

pcm:NetworkLocation. The former 

comprises the concepts pcm:Address, 

pcm:Point, pcm:Area and 

pcm:AbstractLocation. Instances of 

pcm:Point and pcm:Area are further 
associated, through suitable data properties, with 
their corresponding geographical coordinates (not 
shown in Fig. 1). The class 

pcm:AbstractLocation bundles together 
such locations as particular buildings, offices, 
medical laboratories, etc. Network locations are 
not considered in this work and hence the class 

pcm:NetworkLocation is not further 
analysed here—the interested reader is referred to 
[6] for more details. 

pcm: 

DateTime 

An instance of this class describes the specific 
chronological point or time interval at which an 
access request is received.  

pcm: 

Connectivity 

Captures information pertaining to the connection 
or the type of device (e.g. desktop, smart phone, 
tablet, etc.) used by an entity for accessing 
sensitive data. Such information is not considered 
in this work and hence this class is not further 
analysed here—the interested reader is referred to 
[6] for more details. 

 



account when deciding whether to permit, or deny, an 
access request. These attributes are described abstractly in 
terms of the concepts introduced by the CM. 

In the ontological representation proposed in [7] and 
depicted in Fig. 2, an ABAC rule takes the form of an 
instance of the class pac:ABACRule; the knowledge 
artefacts attached to the rule are described generically in 
terms of the depicted ABAC rule template. More 
specifically, each class of this template identifies a 
particular knowledge artefact, whilst each object property 
attaches such a knowledge artefact to the rule; Table III 
briefly elaborates on the concepts and properties of this 
template; in the remaining of this section we focus on a 
particular concept, namely that of a context expression.  

A context expression is represented as an instance of the 
class pac:ContextExpression (see Fig. 3). The various 
attributes that it binds, i.e. its parameters, are represented as 
instances of the CM—in particular, as instances of the 
subclasses of the pcm:SecurityContextElement class 
(see Table I). These parameters are associated with the 
context expression through the object property 
pac:hasParameter; they may be combined with each 
other through the usual logical connectives; to this end, the 
classes pac:XContextExpression (where X stands for 

one of AND, OR, XOR, NOT) are introduced as subclasses of  

the pac:ContextExpression class (see Fig. 3). Their 
intended meaning is as follows: if a context expression is 
represented by an instance of the class say 
pac:ANDContextExpression, its parameters, i.e. the 
contextual attributes associated with it through the 
pac:hasParameter property, are interpreted as being 
pairwise conjuncted; analogous interpretations apply to the 
rest of the subclasses of pac:ContextExpression.  

A context expression may be defined recursively, in 
terms of one or more other context expressions. 
Ontologically, this is captured by including the class 
pac:ContextExpression in both the domain and the 

range of the object property pac:hasParameter (see Fig.  

3). The pac:refersTo property depicted in Fig. 3 attaches 
a context expression to the entity (either subject, object or 
access request) that it refers to.  

IV.  A SIMPLE CASE STUDY SCENARIO 

We next demonstrate how access control policies devised 
to protect EMRs can be expressed as reifications of the 
ontological representation of ABAC rules outlined above. 
We then demonstrate how this ontological representation 
can form the basis for performing semantic inferencing—
hence generating new knowledge—during policy 
enforcement, as well as for identifying inter-policy relations 
and for checking the well-formedness of ABAC rules.  

Suppose a fictitious healthcare provider, call it HCPx, that 
is interested in migrating to the cloud the EMRs that it 
currently hosts on proprietary data servers. We assume that 
the EMRs are persisted in the cloud in a relational database 
table identified as HCPx_EMR. Α number of access control 
policies for safeguarding HCPx_EMR are required. These 
policies generally reflect HCPx’s stance towards security 
and are also assumed to be in line with relevant 
governmental rules and regulations (e.g. the EU’s directive 
2016/680 regarding the protection of natural persons with 
regard to the processing of personal data [9]). Let us initially 

 

Figure 2: ABAC Policy Model 

 

TABLE II: GENERIC KNOWLEDGE ARTEFACTS ASSOCIATED WITH THE ABAC RULE TEMPLATE 

Knowledge 

artefact 
Descriptions Ontological representation 

Controlled 
object 

The resource on which access is requested. Instance of the class pcm:Object (see Fig. 1). 

Authorisation The kind of authorisation granted (either ‘permit’ or ‘deny’) 
Instance of the class pac:Authorisation (see Fig. 2) which 

comprises the individuals pac:permit and pac:deny. 

Action 
The action (either ‘read’, ‘write’ or ‘read/write) to be performed 
on the controlled object 

Instance of the class ppm:DataPermission (see Fig. 2) 

which comprises the individuals ppm:read and pac:write. 

Actor The subject issuing an access request Instance of the class pcm:Subject (see Fig. 1). 

Context 
expression 

A propositional logic expression that must be satisfied in order to 
permit (or deny) an access request; it binds together a number of 
contextual attributes expressed as instances of the CM 

Instance of the class pac:ContextExpression (see Fig. 3). 

 

 

Figure 3: Context Expressions Ontological Template 

 



assume a simple policy comprising the rule shown in 
TABLE III and let us demonstrate how this rule is expressed 
as a reification of the ontological representation outlined in 
Section III.  

A. Modelling HCPx Policies 

Table IV specifies (using the RDF Turtle notation [10]) 

the rule of Table III. The rule itself is represented by the 

instance :Rule1 of the class pac:ABACRule; the subject of 

the rule is represented by the instance :s which is further 

associated through the property pac:hasRole with the role 

‘doctor’. pac:hasRole is introduced by the CM in order to 

associate subjects (i.e. instances of the class pcm:subject) 

with roles (i.e. instances of the class usdl-core:Role—a 

class adopted from the usdl-core ontological framework [11] 

for capturing the various roles that a subject may assume). 

The authorisation that the rule grants is represented by the 

instance pac:permit (see Table II), whereas the action that 

the rule permits is represented by the instance pac:write. 

Finally, the context expression of the rule is represented by 

the instance :expr1 and is associated with two parameters: 

the instance :bldg1 which belongs to the class 

pcm:AbstractLocation and which represents ‘building1’ 

(see Table III), and the instance :workingHours which 

belongs to the class pcm:DateTimeInterval and which is 

delimited, through the data properties pcm:hasBeginning 

and pcm:hasEnd. 

B. Semantic Inferencing During Policy Enforcement 

The concepts and properties introduced by the CM (see 
Fig. 1) may be exploited during the evaluation of an access 
request in order to semantically infer the context that is 
associated with the request (or with the subject and/or object 
of the request). Suppose, for example, that a subject entity 
represented by the instance :s and acting in the capacity of 

the role ‘doctor’ issues an access request to the HCPx_EMR 
table; the request is assumed to be issued from ‘room1001’ 
which is located on the 1st floor of ‘building1’. Note that 
this HCPx-specific location information must be reflected in 
the CM: we assume that during the process of priming the 
CM—a process that aims at rendering the CM suitable for 
the needs of HCPx—the following concepts are introduced 
as subclasses of the class pcm:AbstractLocation (see 

Fig. 4): :HCPx_Room, :HCPx_Floor, :HCPx_Building; 

moreover, the individuals :Room_1001, :Floor_01 and 

:Bldg_01 are also defined as instances of these classes and 
interconnected through the object property 
pcm:associatedWith (see Fig. 4 and Table V). In 
addition, we assume that, based on the available handlers, 
the system is capable of collecting location information only 
at the level of rooms (and not at the level of buildings or 
floors).  

Once the request issued by the subject :s is intercepted 

with the resolved location for :s being reported as 

‘room1001’, a number of facts regarding :s’s location can 
be semantically inferred automatically, through the use of 
an OWL 2 DL reasoner such as Pellet [12]. This inferencing 
is based on the transitivity of the object property 
pcm:associatedWith, as well as of the subclass relation. 

In particular, from the premise that :s is associated with, 

and therefore located in, ‘room1001’ we can infer that :s is 
also associated with, and therefore located on, ‘floor01’ 
(since ‘room1001’ is associated with ‘floor01’) and 
similarly that :s is also associated with, and therefore 
located in, ‘building1’ (since ‘floor01’ is associated with 
‘building1’). These inferred facts essentially render the 
evaluation, hence the application, of the access control 
policy feasible, as the system is able to determine that the 
requestor is actually located in ‘building1’, even though the 
intercepted contextual information reports that the requestor 
is located in a room. 

C. Determining Inter-Policy Relations 

One of the main advantages brought about by expressing 
access control policies declaratively, in terms of the 
ontological model outlined in Section III, is the ability to 
automatically reason, through the use of a DL reasoner, 
about inter-policy relations such as subsumption and 

TABLE III: HCPX POLICY RULE 

Rule 1 
HCPx_EMR can be written by doctors during working 

hours and only from within ‘building1’a. 

a. ‘building1’ is assumed to belong to the premises of HCPx 

 

Figure 4: Semantic Inferencing at the level of the CM 

 

TABLE IV: ABAC POLICY RULE 1 

:Rule1 a pac:ABACRule; 

    pac:hasCtrldObject :HCPx_EMR; 

    pac:hasActor :s; 

pac:hasAuthorisation pac:permit; 

pac:hasAction pac:write; 

pac:hasContextExpression :expr1. 

:HCPx_EMR a pcm:Object.  

:s a pcm:Subject; 

    pac:hasRole :doctor. 

:doctor a usdl-core:Role. 

:expr1 a pac:ANDContextExpression; 

pac:hasParameter :bldg1; 

pac:hasParameter :workingHours 

pac:refersTo :s;  

:bldg1 a pcm:AbstractLocation; 

:workingHours a pcm:DateTimeInterval; 

pcm:hasBeginning “08:00”^^xsd:dateTime; 

pcm:hasEnd “16:00”^^xsd:dateTime; 

 

 



contradiction.  
With regard to policy subsumption, this reasoning is 

based on semantic inferencing that takes place either at the 

level of the CM, such as the inferencing outlined in Section 

IV.B, or at the level of the actual ABAC rule model. 

Regarding inferencing at the level of the CM, suppose Rule 

2 of Table VI (it is assumed that all doctor offices are 

located on ‘floor01’ of ‘building1’). An inferencing process 

analogous to the one outlined in Section IV.B allows us to 

conclude that Rule 2 is, in fact, a special case of Rule 1 of 

Table III: any request that is permitted by Rule 2 is also 

permitted by Rule 1. It is therefore concluded that Rule 2 is 

subsumed by Rule 1. In this respect, it would be 

meaningless to retain both rules in the rule repository: either 

Rule 2 is specified by mistake and should be dropped from 

the system, or Rule 2 is intended as a replacement of Rule 1 

(in an attempt, for example, to introduce a more restrictive 

regime) in which case Rule 1 should be retired from the 

system. 
Regarding inferencing at the level of the ABAC rule 

model, suppose Rule 3 of Table VI. This rule is represented 
ontologically as shown in Table VII. We observe that, with 
the exception of the context expression, all knowledge 
artefacts associated with the representation of Rule 3 (i.e. 
with the instance :Rule3) are identical to the ones 
associated with Rule 1 (see Table IV). We also observe that 
the context expression of Rule 3 is associated with the same 
parameters as the ones of the context expression of Rule 1; 
in addition, these parameters refer in both context 
expressions to the same entity—the subject instance :s. 

Nevertheless, the parameters of :expr3 are logically 

disjuncted as opposed to the ones of :expr1 which are 

logically conjuncted. This clearly renders :expr3 a more 

general expression than :expr1 and hence  inferable from 

:expr1. In other words, any request that is permitted by 
Rule 1 is inevitably also permitted by Rule 3. It is therefore 
concluded that Rule 1 is subsumed by Rule 3. 

With regard to policy contradiction, two ABAC rules are 
considered contradicting when they are associated with 

identical knowledge artefacts but the one yields a ‘permit’ 
decision whereas the other one yields a ‘deny’ decision. 
Clearly, a DL reasoner can be employed to detect whether 
two ABAC rules are contradicting. 

D. Determining the Well-Formedness of Rules 

Another crucial advantage brought about by expressing 
access control policies declaratively, in terms of the 
ontological model outlined in Section III, is the ability to 
automatically reason about the well-formedness of the 
policy rules. This reasoning is performed by a DL reasoner 
through a series of automated checks that aim at assessing 
the well-formedness, hence the validity, of a policy with 
respect to a higher-level ontology (HLO) that captures a set 
of meta-policies that essentially articulate all those 
ingredients that a policy rule may, or may not, comprise. 
These correctness checks are clearly of utmost importance 
for they increase assurance on the effectiveness of the 
policies. For example, in the case of HCPx policies, we 
might be interested in specifying constraints such as the 
ones outlined in Table VIII. These constraints are 
ontologically expressed in the HLO and enforced each time 
a new policy rule is created or an existing policy rule is 
updated.  

V. RELATED WORK 

A number of approaches have been proposed for the 
representation of policies [13—15]. These generally rely on 
the expressivity of OWL [16] for capturing the various 
knowledge artefacts that underpin the definition of a policy. 
In [13] KAoS is presented—a generic framework offering: 
(i) a human interface layer for the expression of policies; (ii) 
a policy management layer that is capable of identifying and 
resolving conflicting policies; (iii) a monitoring and 
enforcement layer that encodes policies in a suitable 
programmatic format for enforcing them. Contextual 
conditions that must be taken into account in access control 
decisions are expressed as OWL property restrictions. A 
main drawback of the KAoS approach is the fact that its 
reliance on OWL raises concerns about the efficiency with 

TABLE V: ABAC POLICY 

:Room_1001 a :HCPx_Room; 

pcm:associatedWith :Floor_01.   

:Floor_01 a :HCPx_Floor; 

pcm:associatedWith :Building_01.   

:Building_01 a :HCPx_Building. 

:HCPx_Room rdfs:subClassOf 

pcm:AbstractLocation. 

:HCPx_Floor rdfs:subClassOf 

pcm:AbstractLocation. 

HCPx_Building rdfs:subClassOf 

pcm:AbstractLocation. 

 

 

TABLE VI: HCPX ADDITIONAL POLICY RULES 

Rule 2 
HCPx_EMR can be written by doctors during working hours 

and only from ‘floor01’. 

Rule 3 
HCPx_EMR can be written by doctors during working hours 

or from within ‘building1’. 

 

TABLE VII: ABAC POLICY RULE 3 

:Rule3 a pac:ABACRule; 

    pac:hasCtrldObject :HCPx_EMR; 

    pac:hasActor :s; 

pac:hasAuthorisation pac:permit; 

pac:hasAction pac:write 

pac:hasContextExpression :expr3. 

:expr3 a pac:ORContextExpression; 

pac:hasParameter :bldg1; 

pac:hasParameter :workingHours 

pac:refersTo :s;  

 

 

TABLE VIII: HCPX ADDITIONAL POLICY RULES 

Each policy rule must be associated with exactly one subject, exactly 

one  controlled object, exactly one kind of authorisation (either permit 

or deny), exactly one type of action (either read or write) and at most 

one context expression. 

Any location attribute that forms a parameter of a context expression 

must be an instance of the class HCPx_Building (see Fig. 4). 

 



which semantic inferencing can be performed dynamically, 
when policies are evaluated against incoming access 
requests. In order to alleviate these concerns, KAoS encodes 
policies in a programmatic format. Nevertheless, this 
precludes the performance of any updates to the policies 
dynamically, during system execution, as such updates 
would naturally require the (updated) policies to be re-
compiled to the programmatic format. 

In [14] Rei is proposed – a framework for specifying, 
analysing and reasoning about policies. Rei adopts OWL-
Lite [17] for the semantic specification of policies. A policy 
comprises a list of rules that take the form of OWL 
properties, as well as a context that defines the underlying 
policy domain. Rei provides a suitable ontological 
abstraction for the representation of desirable behaviours that 
are exhibited by autonomous entities. Rei resorts to the use 
of placeholders as in rule-based programming languages for 
the definition of variables. This, however, essentially 
prevents Rei from exploiting the full inferencing potential of 
OWL as policy rules are expressed in a formalism that is 
alien to OWL. In contrast, variables could have instead been 
modelled in terms of OWL’s anonymous individuals. 

In [15] the authors propose POLICYTAB for facilitating 
trust negotiation in Semantic Web environments. 
POLICYTAB adopts ontologies for the representation of 
policies that guide a trust negotiation process ultimately 
aiming at granting, or denying, access to sensitive Web 
resources. These policies essentially specify the credentials 
that an entity must possess in order to carry out an action on 
a sensitive resource that is under the ownership of another 
entity. Nevertheless, no attempt is made to model the context 
associated with access requests.  

On a different note, the markup languages [18,8,19] 
provide declarative formalisms for the specification of 
policies. Nevertheless, they do not provide any means of 
capturing the knowledge that dwells in policies.  

VI. CONCLUSIONS 

This paper has proposed a novel approach for modelling 
access control policy rules. We argue that our approach 
facilitates developers in expressing effective policies which 
give rise to security controls appropriate for dynamic and 
heterogeneous cloud environments. The approach is 
founded on the basis of an ontological template that captures 
a wide range of contextual attributes that must be taken into 
account during the evaluation of a policy. One of the virtues 
of the proposed ontological template is that it enables the 
evaluation of a request against an access control policy to be 
performed, and reasoned about, at the semantic level; 
furthermore, our ontological template paves the way for the 
performance of automated reasoning about potential inter-
policy relations, such as the identification of subsuming or 
contradicting policies, as well as about the well-formedness, 
hence the effectiveness, of the policies.  

Currently, we are in the process of finalising the 
mechanism that is able to reason about inter-policy 
relations. A policy validator that assesses the well-
formedness of policies against the constraints expressed in 
the HLO is also being finalised. 
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