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Abstract 

Recent advancements in sensor technology have allowed unmanned aerial vehicles 

(UAVs) to function as sensing devices in cooperative aerial communication networks, 15 

offering novel solutions in applications of environment inspection, disaster detection 

and search and rescue operations. Towards this trend, the efficient deployment and 

coordination of UAV networks is of vital importance. Generating controlled 

experimental conditions to implement and evaluate different approaches in this context 

can be impractical and costly and thus the solution of modelling is often preferred. This 20 

paper introduces a tracking model in which multirotor UAVs, equipped with received 

signal strength indicator (RSSI) sensors, are organized in a swarm and cooperate to 

approximate and trail a moving target. The proposed algorithm is able to offer 

autonomous tracking in large scale environments, by utilising just the strength of the 

communication signal emitted by a radio frequency transmitter carried by the target. A 25 

model of the proposed algorithm is created, and its performance is thoroughly evaluated 

in a specialized simulator developed in the Processing IDE. Results demonstrate the 

increased tracking efficiency of the proposed solution compared to a trilateration 

method. 
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1. Introduction 

The proliferation of unmanned aerial vehicle (UAV) technologies has allowed the 

emergence of sophisticated solutions in several areas such as environment monitoring 35 

[1], smart cities [2], disaster management [3], surveillance [4], relay networks for 

services in Internet of Thing (IoT) architectures [5], and search and rescue operations 

[6]. In several of these scenarios, detecting and tracking an individual is of utmost 

importance, in order to deliver the required services.  

Considering that communication can be often deprived in emergency scenarios in 40 

particular, traditional centralized solutions are not always available and the need for 

decentralized approaches arises. In this context, the vision of the IoT has recently seen 

a rapid advancement towards the realization of smart solutions that can be feasible in 

highly dynamic and infrastructure-less environments [7]. IoT architectures can offer 

context awareness [8], localization [9], and tracking services [10], that can prove vital 45 

in emergency situations and can operate when centralized solutions are not preferable. 

In several emergency situations, such as natural disasters, fires, shipwrecks or similar 

accidents, there is an immense impact that raises the challenge of providing swift and 

efficient monitoring and coordination. In this context, an autonomous and efficient 

group of UAVs is of critical importance, as it can be rapidly deployed and search for 50 

victims, providing required communication services while also broadcasting their 

location to dispatch a rescue party. 

There are multiple approaches for dealing with the problem of localizing and 

tracking a mobile target. Existing methods include visual features [11], radio frequency 

(RF) time of arrival [12], angle of arrival [13], time difference of arrival [14], Doppler 55 

and direction of arrival [15] and received signal strength indicator (RSSI) [16, 17] 

sensors. 

Algorithms that utilize visual features are quite effective for tracking an object in a 

wide range of tracking scenarios, however they might face difficulties in long range
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search and track operations, in cases where the vision is obstructed or when light 65 

conditions are not suitable [18]. The use of thermal cameras can tackle this issue, but 

may introduce many false positives when the weather is warm [18]. In addition, time 

of arrival and similar methods require more sophisticated antennas when compared to 

simple RSSI sensors, they often display difficulties in synchronization issues and may 

restrict the UAV's mobility. 70 

Taking into consideration energy constraints that are crucial in UAVs, a simpler 

approach is often preferred to ensure that the flight time is increased, and the mission 

can be carried out in the available time limit. RSSI techniques can offer promising 

solutions in that regard. However, the key challenge of signal attenuation in the 

communication channel caused by shadowing, needs to be addressed. 75 

This paper introduces a new strategy, by which multi-rotor UAVs equipped with 

RSSI sensors form a swarm and collaborate to track a moving target of interest, carrying 

an IoT device that is periodically transmitting the sensor’s information. The proposed 

technique is able to coordinate the mobility of the swarm, based only on the RSSI 

measurements received at each UAV, all of which exchange information and harmonize 80 

their movement accordingly, with the goal of approximating and trailing the mobile RF 

source at a close distance. For the signal propagation modelling, the adopted model is 

derived from the report in [19], which is shown to provide more accurate estimates of 

the signal’s strength in moving networks, compared to free-space and log-distance 

models. 85 

The introduced scheme offers real-time autonomous tracking, and it can operate 

when centralized solutions are not available and where previously engineered 

infrastructure does not exist, providing a potential solution in several emergency 

scenarios, like the ones mentioned above. The nature of this technique offers the 

advantage of allowing the UAVs to preserve proximity to the target, without knowledge 90 

of its position or estimates of the current distance, which are often erroneous. In contrast 

to similar methods, the proposed solution can achieve tracking in large scale 

environments, being restricted only by the received signal strength and the sensitivity 

of the UAV-mounted RF antenna (example range: 3 km in diameter). Simulation 

evaluations demonstrate the increased efficiency of the introduced scheme when 95 

compared to trilateration-based solutions. 



The rest of the paper is structured as follows. The next section presents related 

approaches in the field of localization, outlining background research on tracking using 

UAV networks. Section 3 describes the key features of the tracking scheme and presents 

the propagation scheme used for the signal path loss model. The proposed algorithm is 100 

introduced and analysed in section 4. Section 5 provides a simulation evaluation, 

discussing the results and providing a comparison of the proposed solution with 

trilateration-based techniques. In section 6 the paper is concluded, and prospective 

future work is projected. 

2. Related Work 105 

The area of mobile target tracking has attracted a lot of interest over the years, with 

several approaches being proposed in the literature. Networks of UAVs equipped with 

various sensors have been increasingly used, as their deployment can lead to novel 

solutions in localization applications. Robust localization techniques usually involve 

the use of visual sensors to detect and track a moving object. These methods are 110 

exceptionally effective; however, they require execution of real-time image recognition 

algorithms, greatly affecting the energy preservation which is crucial in UAV 

distributed systems and thus are out of the scope of this paper. 

A popular method that has been traditionally used for localization is that of 

triangulation. Triangulation schemes use the calculated angles between known 115 

locations and combine them with distance estimates from the target to form triangles in 

order to determine its location. A similar approach is that of trilateration, which uses 

only the distance measurements, calculating the position of the target by the intersection 

of the formed circles. The authors of [20] propose a network of UAVs equipped with 

electronic surveillance sensors that provide the RSSI of an RF emitter. These values are 120 

used to compute the distance from the source based on a log-normal shadowing model. 

A fusion center gathers this information from the UAVs and calculates the position of 

the RF emitter by performing trilateration. The conducted simulation analysis verifies 

the effectiveness of the scheme when the target emits at high frequencies. 



Using optimal control for searching and tracking problems has been also extensively 125 

studied, with several control schemes being proposed in recent literature that define the 

movement of agents in order to track a mobile target effectively. In [21], the authors 

propose an algorithm that uses combinatorial optimization and optimal control, by 

combining integer linear programming for obtaining a global optimum with nonlinear 

programming for analysing the motion constraints of the UAV. A motion planning 130 

algorithm is introduced in [22], where a group of UAVs cooperatively track a target by 

optimizing their intercommunication and sensing with a remote base station. The 

objective is to find the balance between gaining maximum information through sensing 

and increasing the probability that robust communication can be achieved with the base 

station. Simulation results demonstrate that transmission optimization is a factor that 135 

can considerably enhance the fusion process and the target estimation accuracy.  

An interesting approach is introduced in [23], where the authors propose a model 

predictive control algorithm that allows a swarm of UAVs to localize cooperatively a 

RF source. The UAVs are equipped with simple RSSI sensors and determine the 

optimal future path based on a receding horizon approach. The estimates are determined 140 

by an Extended Kalman Filter and the UAV trajectory is optimized by the D-optimality 

criterion. A similar approach is followed in [24], where a receding horizon control 

algorithm is introduced for performing multiple target localization. The authors utilize 

ergodic theory for planning the trajectory of multiple agents, adjusting the information 

distribution with adaptive bearing measurements in real time. 145 

The authors in [25] exploit the probe requests periodically broadcasted by Wi-Fi 

devices, such as mobile phones, and devise a strategy for estimating their user's 

location. In the proposed method, a UAV extracts the RSSI and the physical address of 

the Wi-Fi device from the broadcasted probe requests, while moving in different 

locations, known by GPS. A machine learning algorithm is then used to classify the 150 

position of the device into an area among predetermined location zones. This technique 

demonstrates decent accuracy in determining the correct zone, although the 

corresponding geographical area must be known in advance and partitioned into 

appropriate zones, so that the algorithm is trained accordingly. 

The key distinction of the method proposed in this paper from the techniques 155 

discussed above, lies in the fact that it does not try to calculate an estimate of the target's 



position to achieve tracking. Instead, it utilizes knowledge about the signal strength 

indicator at each UAV, designing a strategy that will lead the swarm close to the target 

and enable the UAVs to maintain proximity. The novelty of this approach provides the 

advantage of not relying in distance measurements, which are inevitably inaccurate due 160 

to signal variations caused by random fading effects. 

3. Important features of the tracking scheme 

This section describes the key features of the proposed tracking scheme, devised to 

provide the solution to the cooperative target tracking problem. Subsection 3.1 provides 

the description of the key elements in the system, and subsection 3.2 analyses the path-165 

loss model used for the RSSI measurements. 

3.1 System Model 

The major components of the system are the following: 

a) Mobile Target: This is a mobile individual carrying an IoT device. It can 

also be any moving target with an attached RF emitting device. 170 

b) IoT Device: This is an IoT device carried by the target, or any embedded 

system with an integrated sensor, using an interface that broadcasts the 

sensor's information. 

c) Tracking Agents: These are autonomous multi-rotor UAVs that search for 

the target and maintain proximity in order to offer assistive services (e.g. 175 

delivery of medicine or communication services). They are equipped with 

omni-directional antennas for receiving the target's radio signal and a 

suitable wireless network interface to exchange information with each 

other. The UAVs identify their own position by a Global Navigation 

Satellite System (GNSS) receiver and are equipped with a simple flight 180 

control system that allows them to maintain constant speed and altitude. 

This flight control system also allows them to steer at designated angles and 

fly towards a specific GNSS location. 



d) On-board Processing Unit: This is an embedded system with an 

appropriate wireless network interface, that is carried by the UAVs and 185 

establishes connectivity between them. This system also provides the 

processing capability required to execute the cooperative tracking 

algorithm in real time and controls the navigation of the UAVs. 

3.2 Received Signal Strength Analysis 

The technique proposed in this paper is based on the signal strength measurements 190 

received by each UAV, and thus the RSSI mathematical formulation needs to be 

discussed. Empirical data have shown that the signal cannot be accurately modelled by 

the free-space propagation scheme, due to further attenuations caused by various 

environmental conditions. In order to model the variation in the received power 

precisely, the path loss is estimated by adopting a signal propagation model proposed 195 

in [19], which was derived from actual measurements in a mobile network of fast 

entities. In the conducted experiments, the entities were moving at high velocities in a 

rural area, and the connections were primarily in line of sight conditions. This model 

was chosen because it applies to long distances, considers line of sight conditions, and 

is mainly based on velocities corresponding to the UAV speeds in this tracking 200 

scenario. A comparison between the free-space and the adopted model is illustrated in 

Fig. 1. The authors of [19] determine that the path loss of the signal propagating in 

moving networks that are deployed in outdoor environments can be accurately 

modelled by the following equation: 

 205 

PL = 41.1log10(d) + 17.2 + 20log10(f/5),           (1) 

 

where d is the distance between transmitter and receiver in meters, and f is the frequency 

in GHz. 

To get the RSSI at the tracking UAV, the path loss, the target transmission power, 210 

and the antenna gains are taken into consideration, using the equation below: 



 

Fig. 1: Comparison of the free-space and the adopted RF model. The dashed line represents the 

path loss according to the free-space propagation scheme. The solid line depicts the path loss 

according to the adopted RF model. 215 

 

RSSI = PTx – [41.1log10(d) + 17.2 + 20log10(f/5)] + GTx + GRx,         (2) 

 

where PTx is the target transmission power in dBm, and GTx and GRx are the transceiver's 

and receiver's antenna gains, respectively. 220 

After substituting the values of the transmission power of the target's transceiver (10 

dBm), the gain of the transceiver's and receiver's antenna (2 dBi), and after setting the 

frequency to 2.4 GHz, the RSSI value as a function of distance is calculated in terms of 

dB, as displayed in (3): 

 225 

RSSI = 3.17 − 41.1log10(d)            (3) 

 

In the considered scenario, the UAVs fly in an open environment where there are not 

many obstacles that can cause multipath propagation; however, the issue of shadowing 

still remains. To accommodate for the effect of slow fading caused by this issue, a 230 

Gaussian random variable with mean μ = 0 and standard deviation σ is added to the 

final RSSI value. 

 

  

   

   

   

  
 

  
 

  
 

  
 

  
 

 
 
  

  
 
 
 
  

 
 

 

               

          

             



4. Tracking Algorithm 

The key objective of the UAVs in the proposed scheme is to approach the target and 

follow it at a close distance. This section introduces a simple and reliable method, that 235 

utilizes information about the signal strength at each UAV and coordinates the 

movement of the swarm accordingly, to accomplish this objective. The proposed 

solution is achieved in two phases that are analysed in the following subsections. In the 

first stage, called "Individual Search Phase", the purpose of each UAV is to scan the 

area for a sufficiently strong signal and, once identified, to notify the rest of the UAVs, 240 

so that the cooperative tracking process can commence. Following this, the UAVs 

proceed to the second stage, called "Cooperative Tracking Phase", where the tracking 

algorithm is used to coordinate their movement in order to approximate the target. The 

RSSI sampling time occurs at a 0.5 sec interval in both phases, as this was shown to 

offer the most optimal results. 245 

4.1 Individual Search Phase 

In this phase, the search area is first divided into sectors, according to the number of 

available UAVs. Assuming the swarm is composed of R UAVs with R≥3, the area is 

segmented into R circular sectors each subtending θ=360/R degrees. Each UAV starts 

to move in line with the bisector of the equivalent segment, until the condition for 250 

proceeding to the next phase is satisfied. This condition is met, when at least one UAV 

reaches an RSSI threshold which is ten times stronger than the RSSI at the next closest 

UAV to the target (approximately 15 dBm higher). This threshold was decided after 

examining several values, and it was shown to offer the best results. Fig. 2 illustrates 

an example in which the condition to terminate the individual search phase is satisfied. 255 

In the scenario depicted, the swarm consists of three UAVs and the search area is 

therefore divided in three sectors, with each UAV moving along the bisector of its own 

segment. When UAV A measures the RSSI value of -100dBm, the other two UAVs 

measure -115dBm and -125dBm, respectively. Since the difference from the next 

closest UAV  260 



 

Fig. 2: Individual search phase with 3 UAVs. UAV A satisfies the condition for the swarm to 

proceed to the cooperative tracking phase. 

 

(in this case UAV B) is 15dBm, the individual search phase is completed. The 265 

corresponding RSSI threshold is calculated by (3). It should be noted that not all UAVs 

ought to complete the individual phase for the swarm to proceed to the second phase. 

When the first UAV concludes the initial phase, all the rest change to cooperative mode. 

Small variations in the starting time of the cooperative phase do not affect the overall 

performance of the tracking scheme. 270 

4.2 Cooperative Tracking Phase 

After a UAV satisfies the terminal condition of the Individual Search Phase, all 

UAVs switch to the Cooperative Tracking Phase and start swarming towards the target. 

Employing measurements of the received signal strength, the developed algorithm 

ensures that the UAVs are able to close in to the target and maintain proximity. 275 

The concept lies in the difference in RSSI values measured over time. Increases in 

the signal power suggest that the UAV is approximating the target and needs to maintain 

the current course. On the other hand, decreases in RSSI constitute an indication that 



the UAV is moving away, and thus a decision for a new direction is required. This 

decision  280 

is affected by the knowledge regarding each UAV's current status with respect to the 

target proximity, and their relative positions in the swarm, as demonstrated later. 

To compensate for the fluctuations of the signal due to shadowing in the 

communication channel, an additional technique is utilized, according to which there 

are several consecutive signal strength measurements stored in a Samples Window 285 

(SW), and the final RSSI figure to be examined is calculated as the mean value of these 

samples. However, due to the high distances involved in this scenario, a fixed window 

size is not appropriate for all occasions. Too many measurements result in higher 

accuracy of the final mean value, but also take more time to be measured, during which 

the target may have moved further. On the other hand, fewer measurements result in a 290 

quicker decision but at the cost of less accuracy. Thus, a new function is defined, 

according to which the size of the SW changes dynamically based on the received 

signal, and therefore the current proximity to the target.  

 

Algorithm 1: Determine UAV State 

while cooperative_tracking_phase = true do 

  sample_average ← 0 

  j ← 1 

  while j ≤ 2 do 

    RSSI ← 0 

    i ← 1 

    while i ≤ window_size do 

      RSSI[i] ← getRSSI 

      sample_average[j] += RSSI[i] 

      i++ 

    end 

    sample_average[j] /= window_size 

    j++ 

  end 

  if halted = false then 

    if sample_average[0] > sample_average[1] then 

      getting_close ← false 

    else 

      getting_close ← true 

    end 

  end 

end 



The mathematical relation between the absolute value of the RSSI (x) and the size of 295 

the SW f(x) was determined through simulation evaluations and is the following: 

 

f (x) = 12log2(x) − 65             (4) 

   

The integer part of this function’s outcome is the calculated window size (SWS). After 300 

the computation of two consecutive mean RSSI values, the algorithm examines their 

difference and classifies the UAV, as presented in Algorithm 1. 

The goal of this procedure is to determine the UAV's current state regarding the 

proximity to the target. A positive difference classifies the UAV into the "getting close" 

state, whereas a negative difference indicates the "getting away" state. If the UAV has 305 

managed to approach the target into halt distance, the “halted" state becomes true and 

it stops moving, hovering in the current location. This information is communicated to 

all UAVs in the swarm and allows each UAV to take a movement decision based on 

Algorithm 2. 

The first step towards taking the direction decision is the calculation of the maximum 310 

RSSI value throughout the swarm, flagging the corresponding UAV as the "warmest". 

If the current state of a UAV is "getting away", the algorithm compares its current RSSI 

to the global maximum. In the event that the current RSSI is higher, the UAV steers 

towards the "warmest" UAV in order to approximate the target, otherwise it takes a 

fixed rotation. 315 

 

Algorithm 2: Determine UAV Direction 

RSSI ← getRSSI 

maxRSSI ← getGlobalMax 

warmest ← getWarmestUAV 

if getting_close = false then 

  if RSSI < maxRSSI then 

    Change direction towards warmest 

  else 

    Rotate 

  end 

end 

window_size ← getSWS 

 



In case that one UAV fails to communicate with any UAV that is currently closer to 

the target, then the conditions in Algorithm 2 will fail, and that UAV will follow its 

individual strategy, rotating until it will start approaching the target. In the event that a 320 

UAV fails to receive an RSSI measurement, the algorithm regards this situation as if 

that UAV has received a very highly negative measurement. As a consequence, this 

UAV considers that it is very far from the target and rotates to move towards a different 

UAV in the swarm, specifically to that which has communicated the strongest measured 

RSSI. This behaviour ensures that no single UAV in the swarm will diverge very far 325 

from the target or the rest of the swarm. 

In order to prevent the UAVs from colliding with each other during the cooperative 

phase, the swarm is incorporating a collision avoidance strategy, based on the known 

locations of the UAVs. According to this strategy, during every RSSI measurement 

each UAV is checking the distance from the rest of the UAVs and is set to halt if that 330 

distance is below 10 meters. It is assumed that the UAVs fly at a high altitude, in an 

open environment with no other obstacles. Thus, no additional obstacle avoidance 

method is required, besides the collision avoidance strategy implemented to prevent 

them from colliding with each other.  

This cooperative distributed approach allows all UAVs to take decisions through 335 

their onboard processing unit, by executing the same algorithm, communicating with 

each other, and coordinating their actions to achieve the common goal of tracking the 

moving target. As a result of following this algorithm, a flocking behaviour is emerging 

in the swarm. This behaviour allows the UAVs to approach and trail the target by 

gradually moving towards a "warmer" location.  340 

5. Simulation Evaluation 

A comprehensive evaluation of the introduced tracking scheme was conducted, by 

developing a specialized simulator, using the Processing IDE [26]. The simulator can 

be used to evaluate various tracking schemes, while providing a visual representation 

of the simulated environments, as shown in Fig. 3, and exports the results in a 345 

spreadsheet. The simulator also displays information regarding the current target and 



UAV velocities, the measured RSSI values, the actual distances and important 

parameters such as the standard deviation of noise, the size of the samples window and 

more. The key objective of the conducted simulations was the evaluation of the 

proposed algorithm by comparing its performance to a reference target tracking 350 

approach. The method of trilateration was chosen as reference since it constitutes the 

foundation of most tracking algorithms.  

In order to increase the accuracy of the trilateration process, the recent analysis 

conducted on [27] was taken into consideration. According to the authors' suggestions, 

the coordination of the UAVs was adjusted so that they always form a triangle while 355 

determining the RSSI, in order to avoid having collinear measurements. At each 

sampling interval, all UAVs take the measurement of the RSSI from the target in a 

similar way to the proposed algorithm described above. Afterwards, this RSSI value is 

converted to distance, using the following formula: 

 360 

d = 10(𝑅𝑆𝑆𝐼1𝑚− 𝑅𝑆𝑆𝐼

41.1
),             (5) 

 

where RSSI1m is the RSSI value at a distance of 1 meter and RSSI is the measured RSSI 

at the current position. Then the trilateration algorithm constructs a circle with radius r 

equal to the corresponding d calculated at each UAV, and finally calculates the 365 

intersection of these circles, which is the assumed position of the target, and where all 

UAVs move towards. 

In the simulations, all UAVs start from the same location and fly in an open area 

with constant speed and at a fixed altitude. At every execution, the target is placed in a 

random ground location on a circle with a radius of 3 km. Specific random seeds 370 

ranging from 1 to 10 are being used, so that the multiple starting locations of the target 

remain identical on both tracking schemes. Finally, a random waypoint model is used 

to simulate the mobility of the target which is moving at 5 km/h, corresponding to the 

walking speed of an individual. A simulation lifetime consists of several discrete 

simulation cycles. During each cycle, all entities take a single, distinct decision and 375 

action. The cycle starts with the target making a movement according to the mobility 

model used. Then, each UAV in the swarm executes the tracking algorithm once and  

 



 

Fig. 3: Visual representation of a devised simulated environment. The square represents the target 380 

and the dots represent the UAVs. 

 

advances accordingly. The movement of both the target and the UAVs in each cycle is 

the minimum amount of movement allowed by the parameters for each case. The 

parameters of the conducted simulations are listed in Table 1.   385 

The performance of the two algorithms was initially examined as the standard 

deviation of noise due to fading (σ) is increasing, ranging from 2 to 8. Following this, 

the performance of the two schemes was examined at a realistic σ value, for different 

UAV velocities. 

The final stage of the evaluation examined the performance of the introduced 390 

algorithm for varying target speeds, as well as for larger swarm sizes. The following 

key performance indicators were used: i) Elapsed Time: The time elapsed until the first 

UAV is able to approximate the target in halt distance. This distance is used to 

determine how close the UAVs should approach the target according to the use case. ii) 

Average Distance: The average distance between the target and the closest UAV 395 

throughout the simulation duration. iii) Cycles in Halt: the percentage of cycles in the 

simulation during which the closest UAV stays still due to the RSSI being in the halt  

 

 



Table 1: Parameters of the simulation. 400 

Parameter Value 

Environment area 28 km² 

Swarm size 3 - 20 

Target speed 5 km/h 

UAV speed 25 - 55 km/h 

UAV altitude 100 m 

UAV halt distance 115 m 

Target TX power 10 dBm (10 mW) 

UAV RX sensitivity  -92 dBm 

Target TX antenna gain 2 dBi 

UAV RX antenna gain 2 dBi 

Signal frequency 2.4 GHz 

 

threshold (suggestion that it has approached the target). It should be noted that this 

metric offers an indication of the behaviour of the UAVs. The following metric (cycles 

in step) shows if the UAV has actually reached the halt distance. iv) Cycles in Step: the 

percentage of simulation cycles during which the closest UAV stays within the halt 405 

distance. 

Fig. 4 demonstrates the trajectory followed by 3 UAVs in a scenario with realistic 

slow fading (σ = 3). From the outlined path it is observed that, despite having no 

knowledge of the target's location, the swarm is able to effectively approach the RF 

source using the introduced algorithm, by taking appropriate turns when diverging. 410 

Fig. 5 demonstrates the minimum time required by each algorithm to approximate 

the target, as a function of the standard deviation σ of the additive White Gaussian 

Noise. It can be seen that the proposed algorithm is able to maintain efficiency even for 

high values of σ. Similar observations appear in the chart of Fig. 6, which plots the 

average distance of the closest UAV from the target. As observed, the proposed 415 

algorithm is not greatly affected by increased noise. In contrast, the trilateration solution 

becomes too inaccurate and fails to provide effective target following, especially as σ 

exceeds values of 5. The reason behind this observation is that the introduced approach  



 

Fig. 4: Target and tracking UAV trajectories. 420 

 

does not rely in distance measurements obtained by converting RSSI values, like the 

case of trilateration. Instead, it is based on indicated deviations of the signal’s power to 

provide the required target following capability, which results in more robust 

performance in random fading conditions.  425 

The charts presented in Fig. 7 and Fig. 8 depict the percentage of cycles in the 

simulation during which the closest UAV is on halt and stays in step, respectively. 

When it comes to being in halt, similar results are observed in both algorithms for low  

noise, with a slight advantage gained by the proposed solution as σ becomes realistic 

and higher. When examining the actual duration that the UAVs are able to stay within 430 

halt distance, the results depict a clear advantage for the proposed algorithm. As these 

two charts demonstrate, the introduced approach outperforms trilateration for realistic 

fading conditions and is even able to remain effective in highly noisy environments. 

This is attributed to the fact that the introduced algorithm guides the UAVs to halt 

distance, without estimating the target’s position, in contrast to trilateration which relies 435 

in location estimates based on calculated distances.  

The second stage of the simulation evaluation examines how the velocity of the 

UAVs is affecting the performance of the two algorithms. During this evaluation, the 

standard deviation of noise due to fading is set to a realistic value (σ=3), as suggested 

in [19], while the UAV velocities range from 25 to 55 km/h. The results about the  440 



  

Fig. 5: Minimum elapsed time until the UAV 

reaches the target versus σ. 

 

Fig. 6: Average distance between the UAV 

and the target versus σ. 

 

  

Fig. 7: Simulation cycles percentage during 

which the UAV stays in halt versus σ. 

 

Fig. 8: Simulation cycles percentage during 

which the UAV stays in step versus σ. 

 

 

"Elapsed Time" metric are presented in Fig. 9. As expected, an increase in velocity 

yields shorter time elapsed until the target is approached. In Fig. 10 the chart plots the 

average distance from the target as a function of the UAV's velocity. It is evident that 

again, higher velocities lead to shorter average distances. The results demonstrate that 

the introduced algorithm is more efficient in tracking the target at realistic noise, 445 

irrespective of the velocity of the UAVs. It is also observed that the time efficiency of 

the introduced algorithm does not grow significantly, as the UAV speed increases. The 

reason is that, while higher velocity has an obvious advantage in terms of time required 

to reach the target, it also allows the UAVs to move further between direction decisions, 

which may result in additional diversion from the target, until a movement correction 450 

is made by the algorithm. 



  

Fig. 9: Minimum elapsed time until the UAV 

reaches the target versus the UAV velocity. 

 

Fig. 10: Average distance between the UAV 

and the target versus the UAV velocity. 

 

  

Fig. 11: Simulation cycles percentage during 

which the UAV stays in halt versus the UAV 

velocity. 

 

Fig. 12: Simulation cycles percentage during 

which the UAV stays in step versus the UAV 

velocity. 

 

Following in Fig. 11, it is observed that in both algorithms the UAVs stay in halt for 

approximately the same time as velocity increases, while as shown in the chart of Fig. 

12, the introduced algorithm clearly gains the advantage in being in step from the target 

for longer. An interesting observation is that, when it comes to the UAVs managing to 455 

reach the target in halt distance (be in step), the proposed solution is demonstrating 

increased efficiency even at relatively low velocities, with the algorithm being able to 

keep the swarm close for longer, potentially supporting several energy-constrained 

applications. 

In the final stage of the system evaluation, the performance of the introduced 460 

algorithm is inspected for higher target velocities, and the effect of increasing the 

number of UAVs in the swarm is also examined. Fig. 13 demonstrates the minimum 

time required to approximate the target as a function of the standard deviation (σ) of the  



  

Fig. 13: Minimum elapsed time until the 

UAV reaches the target versus σ, for different 

target speeds. 

Fig. 14: Minimum elapsed time until the 

UAV reaches the target versus the size of the 

swarm, for different UAV speeds. 

 

 

Gaussian Noise. The velocity of the target ranges from 5 to 11 km/h and the UAV speed 

is set to 50 km/h. The chart indicates small variations in the performance of the 465 

algorithm for the different target speeds which is reasonable considering the relatively 

much higher UAV velocity. The chart depicted in Fig. 14 plots the minimum time 

required by the first UAV to reach the target as a function of the number of UAVs in 

the swarm. For relatively low UAV velocities, the results demonstrate improved 

performance as the size of the swarm increases. However, as the UAV velocity 470 

increases, the algorithm does not seem to be affected in a significant way by a swarm 

size higher than 7 UAVs. This observation can be justified by the fact that if the swarm 

consists of a  sufficiently high quantity of UAVs, the algorithm is able to divide the 

search area into an adequate number of sectors during the individual search phase, so 

that at least one UAV will happen to move inside a territory in which the target will be 475 

very close to. 

6. Conclusion 

This paper presented the model of a new cooperative algorithm, that allows a swarm 

of UAVs to locate and follow a mobile individual, by employing only measurements of 

the RF signal power emitted by an IoT device carried by the target. This was achieved 480 

by decomposing the task of tracking into the two phases of individual search and 

cooperative approach. A specialized simulator was developed that allowed the 



comprehensive evaluation of the algorithm through diverse simulations, demonstrating 

its increased efficiency in comparison with a trilateration-based solution. The 

evaluation results have also shown that the introduced algorithm is able to maintain 485 

effectiveness in high levels of signal attenuation due to fading and in low UAV 

velocities as well. Potential applications of this tracking model focus on the provision 

of communication and location services in dynamic environments when centralised 

infrastructure is not available. The successful implementation of the proposed scheme 

implies efficient communication between the UAVs, which is a subject relatively 490 

understudied. The survey in [28] offers an extensive review of existing communication 

protocols for UAV networks and discusses open issues for research. Regarding the 

introduced algorithm, future work will revolve around the investigation of a multiple 

target tracking scenario in the context of IoT. 
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