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Separation of duty (SoD) is a fundamental principle of computer security that has not been
addressed sufficiently in multi-level security (MLS) mandatory access control (MAC) models, as
realized through the adoption of the Bell-LaPadula (BLP) model. This is due to the lack of means at
present to express SoD constraints in MAC. The primary objective of this paper is to overcome this
but within a framework that allows for rigour and linguistic features to express SoD constraints,
while retaining the core security properties of BLP, namely the Simple Security Property and
�-Property. To this end, we propose a formal framework which bridges the BLP model with the
more general hierarchical role-based access control (RBAC) model. Our framework is based on a
hierarchy of permissions that is founded on a novel concept of permission capacity, determined on
the basis of the security levels that characterize objects in MLS models. Such a hierarchy naturally
provides a solid basis for defining role seniority and deriving a hierarchical ordering on roles within
MLS models. SoD constraints are expressed by means of conflicting permissions that give rise to

mutually exclusive roles.
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1. INTRODUCTION

Access control methodologies fall into two broad categories:
one catering for the assurance of specific security goals—such
as confidentiality and integrity—directly by virtue of the
underlying security models, and the other for delegating the
assurance of such goals to security administrators and informa-
tion owners, by providing the means for expressing relevant
security measures. Notable exemplars of the former category
include mandatory access control (MAC) methodologies such
as the Bell-LaPadula (BLP) [1], Biba [2] and Clark–Wilson
security models [3] for assuring, respectively, confidentiality,
integrity and avoidance of certain forms of conflict of interest.
A characteristic advantage of these models is the consistency
in the interpretation of security goals in arriving at access con-
trol decisions, once the security clearances of subjects and

the security classifications of objects are appropriately estab-
lished. Exemplars of the latter category, i.e. which delegate
the assurance of security goals to security administrators and
information owners, include the Role-Based Access Control
(RBAC) [4, 5] and Discretionary Access Control (DAC) [6–8]
methodologies. An outline of BLP and RBAC models follow
later in Section 3.

While DAC leaves decisions controlling access to named
objects at the discretion of their owners, RBAC assumes greater
control over such decisions by taking an institutional stand-
point, that is, by adopting the institutional practices as the basis
for formulating security policies and by ensuring that such
policies are enforceable on an institution-wide scale. However,
recognizing the complexity arising as a result in the manage-
ment of security policies, especially in the face of potentially
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frequent changes in institutional security requirements, RBAC
relies on the notion of a role as a core concept in order to sim-
plify the overall design and incorporate such changes with
minimal effect on the underlying security architecture. With
the adoption of the notion of a role, RBAC shares a general
standpoint with the former category of MAC security method-
ologies, namely the ability to consistently interpret security
requirements, in this case not with respect to a particular secu-
rity goal, but with respect to the roles that the individuals play
in an organization.

Through the adoption of the notion of a role, RBAC is capa-
ble of efficiently accommodating another important common
practical necessity, namely, the need for specifying Separation
of Duty (SoD) constraints [3]. SoD is a security principle used
to formulate multi-person control policies. It maintains that if a
sensitive task requires n distinct operations for its completion,
k of these operations are considered conflicting and must be
performed by different users [9]. An outline of SoD constraints
follows later in Section 2.2. Its aim is to distribute the respon-
sibility and authority for a task to two or more people and thus
significantly mitigate the risk of inadvertent mistakes, fraud or
sabotage.

Although SoD has been studied extensively within the
context of role-based models in mainly commercial settings
[4, 9–11], it has not found sufficient attention in MLS MAC
models. Nevertheless, SoD constraints may be equally signifi-
cant in contexts in which fundamental security properties such
as confidentiality and integrity are typically assured through
the adoption of the BLP and Biba (MLS) models [1, 2]. For
example in a military context, where confidentiality may be
assured through the BLP model, we might additionally require
that two different individuals must independently arm and
launch a nuclear missile [12].

Motivated and driven by this shortcoming, the work reported
in this paper proposes a novel formal framework for: (i) dealing
with permissions, in particular, assigning permissions to roles
based on security levels that conform with those in BLP, (ii)
dealing with conflicting permissions and satisfying SoD con-
straints through the adoption of a novel view of role seniority
and permission inheritance and (iii) providing an alternative
definition of role seniority as understood in RBAC. The frame-
work is underpinned by confidentiality objectives as advocated
by the BLP model, i.e. as expressed by its Simple Security and
�-Security policies. The main benefit of our approach is its
ability to incorporate confidentiality assurances within a hier-
archical RBAC setting while, at the same time, addressing SoD
constraints in MLS systems.

Unlike previous related works [13–15], our framework is
based on a hierarchy of permissions which is in turn founded
on the novel concept of permission capacity. This concept is
closely related to the security levels that characterize objects
in MLS systems; it may serve, for example, as a measure of
competences required in, or security vulnerabilities posed
by, the performance of the operation associated with a given

permission. Permission hierarchies lie at the foundation of how
role hierarchies are constructed in MLS systems; their relation
to real-world scenarios is demonstrated through the example in
Section 4.6. In our view, the determination of the seniority of a
role on the basis of the capacities of its associated permissions1

is intuitive and natural in an MLS context. More importantly, it
has a significant practical benefit, namely, in that it greatly sim-
plifies authorization management in large systems by absolving
security administrators from the burden of having to explicitly
assign seniority levels to roles. In addition, it allows a role to
inherit permissions directly, i.e. dispensing with the require-
ment for these permissions to be also assigned to more junior
roles as in conventional RBAC. It is emphasized here that our
work does not aspire to devise yet another approach for the
specification of SoD constraints. Nor does it claim that it is a
simpler substitute for either RBAC or BLP, each taken on its
own, as it relies on features of both of them taken together.

It is worth mentioning here that the Simple Security and
�-Security policies are not unique to the BLP model; the same
terminology is encountered in the Chinese Wall security model
due to Brewer and Nash [17]. However, despite the similarity
of terms, these notions are fundamentally different in the two
security models. In the Chinese Wall security model, the two
policies are designed to prevent conflicts of interest arising
from having prior access to information sources by control-
ling access to the relevant objects depending on access rights
that a given subject has had or already has. In contrast, in BLP
the access rights to objects are determined solely by clear-
ance levels possessed by subjects relative to the security levels
attributed to the objects. Safeguarding confidentiality being our
primary security objective, BLP suits our purpose better.

This paper is structured as follows. Section 2 describes
related work and highlights their major differences with the
approach presented in this paper. Section 3 presents an overview
of the BLP model from the perspective of our development
and introduces some of the relevant RBAC notation. Section 4
presents a setting where objects and permissions can be mean-
ingfully associated with each other, akin to the object-oriented
view and introduces the concept of permission capacity; it
demonstrates how the latter concept can form the basis for the
definition of a hierarchical ordering on permissions in the MLS
context. Section 5 introduces explicit assignment of permis-
sions to roles and defines a hierarchical ordering on roles. It
also proposes a formal framework for the implicit assignment
of permissions to roles and introduces the concept of conflict-
ing permissions and roles from a SoD perspective. Section 6
defines a suitable user-to-role assignment relation that limits
the role membership of users to non-conflicting roles. Section 7
demonstrates that the simple security property and �-property
are satisfied in a SoD-aware BLP model—one which by design
prevents users from performing conflicting operations. Finally,
Section 8 presents conclusions and future work.

1 An RBAC role is a named collection of permissions [16].
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2. RELATED WORK

The purpose of this section is to set the broader context for our
work by shedding some light on existing relevant research. In
this respect, it briefly summarizes works in the realm of RBAC
and MAC and highlights their major differences from our
approach. It also briefly presents research on the incorporation
of SoD in role-based systems.

2.1. RBAC and MAC

Hierarchical role-based access control models [4, 16, 18] have
attracted considerable research interest in recent years due to
their inherent ability to reflect organizational structure and to
interpret security requirements across different roles in a con-
sistent manner, and thereby to facilitate easier administration
of institutional security. Delegation of permissions and roles
is an important aspect of RBAC and has been studied widely
[19–21]. The growing practical interest in RBAC, as well as the
wide-ranging research on the subject, is well reflected in the
initiative to draw a standard on a unified model for RBAC [16].

In [13], the authors describe an approach whereby RBAC
is configured for accommodating the BLP model and hence
demonstrate the generality of the former with respect to the
latter. Despite the significance of its contribution and the clarity
of its basic idea, it provides an abstract and purely mechanistic
treatment of roles within the context of MLS: one in which
roles are used to model labels of the lattice derived from the
security levels. Although suitable for demonstrating the gener-
ality of hierarchical RBAC over BLP, such an abstract view can
only characterize roles on the basis of the effect—either purely
observational or alterational-only—that they may bring about
on sets of objects that lie at certain security levels. Such a view
fails, in essence, to take into account a crucial aspect of the
underlying semantics of a role, namely, the effect that it brings
about on individual objects. Thus, such an approach overlooks
the inherent nature of a role, as determined by the operations
permitted on the objects that the role is associated with. A clear
disadvantage of such an isolated treatment of roles is that it
precludes from the outset the expression of SoD constraints.
In contrast, the work reported in this paper provides a different
view of a role in an MLS context, one which fully conforms
with a role’s nature in the RBAC methodology, in essence as a
collection of permissions. Thus, whereas in [13] roles derive
their seniority directly from the security classification provided
by the underlying BLP model, in our work roles derive their
seniority from the permissions that they entail. Consequently,
our work provides the ability to express SoD constraints in an
MLS context.

The work reported in [22] attempts to develop a mapping
algorithm to transform BLP security policies to equivalent
RBAC policies. Nevertheless, the authors employ certain
unconventional notations that hinder a proper understanding
of their approach. In [23], a generic framework for the formal

comparison of different access control models is presented.
The approach is based on the notion of simulations: one access
control model is more restrictive than another iff, for any imple-
mentation of the former, an analogous implementation of the
latter can be devised. The authors use their approach to com-
pare BLP with RBAC and conclude that the former is strictly
more restrictive than the latter.

As already mentioned, the framework presented in this work
is founded upon the notion of permission capacity which deter-
mines the security level of a permission and thus allows for the
definition of a permission hierarchy. It is not the first time that
security levels are assigned to RBAC permissions. In [14], the
security level of a permission is determined on the basis of the
roles to which the permission has been assigned; however, as
the author concedes, this definition is problematic as it requires
that for a user to obtain a certain permission, the user must also
acquire all roles to which that permission has been assigned.
In our view, such a definition of a permission’s security level
is cumbersome and counter-intuitive, especially from a MAC
standpoint.

Crampton [14] defines a seniority relation on permissions
which, however, is completely detached from the concept of
permission security levels: for any two permissions p and p′,
p′ is senior to p (in the sense that p′ subsumes p) iff the for-
mer enjoys a richer set of access modes2 than the latter on the
same underlying object o. Nevertheless, we consider this to
be a rather limited view of permission seniority from an MLS
standpoint as it completely overlooks object classifications and
thus restricts seniority comparisons with permissions that are
defined on the same object.

In [15], the Oriented Permission RBAC (OP-RBAC) model is
presented, which is founded upon Crampton’s approach to per-
mission inheritance proposed in [14]. In this approach, permis-
sions are characterized as either ‘up-oriented’, ‘down-oriented’
or ‘neutral’. An up-oriented permission can be inherited by any
role that has a higher seniority than any of the roles to which
the permission is explicitly assigned; similarly, a down-oriented
permission can be inherited by any role that has a lower senior-
ity than any of the roles to which the permission is explicitly
assigned; in contrast, neutral permissions are not inherited by
any roles to which they have not been explicitly assigned. OP-
RBAC is specifically preconfigured to conveniently accommo-
date the BLP model without the need of introducing a dual role
hierarchy as, for example, in [13]. This is demonstrated in [15]
by using OP-RBAC to implement various different versions of
the BLP model. This work differs from ours in the following
important aspects. Firstly, no explicit reference is made pertain-
ing to the incorporation of SoD constraints in the BLP model.

2 In [14], a permission takes the form (o, {m1, . . . , mk}) where o is an object
and mi (for each i ∈ 1, . . . , k) is an access mode. For abitrary finite sets of
access modes M and M ′, if p = (o, M ) and p′ = (o, M ′), then p′ is senior to p
iff M ⊆ M ′.
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Secondly, no hierarchical ordering is identified between permis-
sions in the MLS context which precludes the derivation of a
role’s seniority from its constituent permissions.

It is widely accepted that assigning permissions to users
indirectly, via roles, in RBAC may have potentially negative
repercussions on the appropriateness of the operations that are
exposed to users. This may be caused, for example, by inad-
vertently affecting the role seniority relation. In an attempt
to address this shortcoming, Ref. [24] discerns a fragment of
RBAC called ‘bi-sorted role-based access control’. In this
approach, two distinct objects of indirection are identified: the
proper role, which applies only to users, and the demarcation,
which applies only to permissions. These two objects are linked
up via a ‘grant’ relation which enables users assigned to proper
roles to acquire appropriate demarcations, hence permissions.
The authors maintain that such a decoupling of roles enhances
organizational scalability, e.g. by preventing roles from dynam-
ically becoming accessible to a wider, or narrower, set of users
when permissions are added to, or removed from, roles.

2.2. SoD

The concept of SoD has long existed in the realm of informa-
tion security as a core mechanism for preventing fraud and
mitigating errors [3]. As reported in [25], there are at least two
approaches to enforce SoD policies. One is the history-based
approach which takes into account all the actions that a user
has performed on the system in order to dynamically determine
whether the user can be granted permission to perform a cer-
tain operation. The second is the static permission-assignment
approach which a priori assigns to each user an appropriate
set of permissions such that a minimum number of users is
required to collectively perform a sensitive task.

SoD-motivated constraints have been studied widely in the
relevant literature, especially within the context of RBAC-
protected systems. In [26], the authors formally specify a wide
range of static and dynamic SoD properties in secure RBAC
systems and identify their interrelationships. These interre-
lationships are intended to aid the implementation of SoD
policies which are defined as conjunctions of SoD proper-
ties. On a similar note, albeit in a less formal manner, Ref. [9]
introduces the notion of history-based SoD and identifies dif-
ferent kinds of SoD variations and the mechanisms required to
implement them.

The works reported in [11, 12, 27] propose formal languages
for specifying a variety of increasingly sophisticated SoD con-
straints. In [27], the authors present the elements, syntax and
semantics of RCL 2000, a formal language for specifying role-
based authorization constraints and show how this language can
be used to express SoD constraints as well as obligation con-
straints, i.e. constraints that require a user to be assigned certain
role combinations. In [11], a graphical access control model is
proposed which ultimately aims at simplifying the process of
constraint specification by expressing SoD constraints as binary

relationships. The authors demonstrate that their approach is
capable of expressing a variety of constraints. Crampton [12]
proposes a set-theoretic approach for the specification of SoD
constraints which, as the author claims, is simpler than other
similar approaches. The relationship between static, dynamic
and historical SoD constraints is identified and discussed. Dif-
ferent flavours of SoD—such as role-based, permission-based
and object-based—are specified and enforced through the use
of a hypothetical ‘constraint monitor’.

In [25], the authors stress the distinction between static SoD
policies and mutually exclusive role constraints (the latter are
simply a mechanism for enforcing the former) and demonstrate
that the verification problem—i.e. the problem of verifying that
a set of constraints implements a certain SoD policy in RBAC–is
intractable. They also propose an approach for the efficient gen-
eration of the minimum set of constraints to enforce a given SoD
policy. In [28], a framework is developed for specifying SoD
constraints in the generalized temporal RBAC (GTRBAC) [28].
The work reported in [29] proposes a genetic algorithm for solv-
ing the minimum user assignment problem under multiple static
mutually exclusive role (SMER) constraints by relating it to the
chromatic number problem in graph theory.

In [30], a language for the specification of static and dynamic
SoD constraints in role-based workflow systems is proposed.
The problem of checking whether a workflow with such con-
straints has a valid user-to-task assignment is discussed and
a relevant algorithm is proposed. A similar problem is dis-
cussed in [31]. Staying within the realm of workflow systems,
but on a more abstract note, Ref. [32] proposes a novel alge-
bra for the specification of high-level policies that combines
requirements on the number of users motivated by SoD con-
siderations with requirements in users’ attributes. In a similar
spirit, Refs. [33, 34] extend the work in [32] by increasing its
expressiveness through the incorporation of multisets and by
allowing for changing role assignments during workflow execu-
tion. In addition, they take advantage of CSP’s [35] operational
semantics in order to bridge the rift between abstract alge-
braic specifications on the one hand, and run-time enforcement
mechanisms on the other.

Habib et al. [36] identifies several flaws that are related to
dynamic SoD and that arise when mutually conflicting per-
missions are dealt with at the role level; for instance: (i) any
permissions that are associated with mutually exclusive roles
are effectively rendered conflicting (whereas, in fact, they
may not be); (ii) users often have to switch between entire ses-
sions to prevent them from obtaining conflicting permissions;
(iii) security administrators have no means other than roles for
exercising control over conflicting permissions. To overcome
these flaws, the authors propose a solution whereby a role is
divided into an ‘inner’ and an ‘outer’ part comprising, respec-
tively, conflicting and non-conflicting permissions; users are
allowed to activate the outer parts of mutually exclusive roles.

In a similar vein, the work in [37] recognizes drawbacks
inherent in manipulating SoD requirements at the role level,
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e.g. through static and dynamic mutually exclusive role (SMER
and DMER) constraints. Further, they identify the need for
treating SoD policies at the task level, rather than at an individ-
ual step level, as well as the need for distinguishing between
‘risky’ and ‘credible’ users. They formally demonstrate that the
enforceability of a SoD policy is mathematically intractable
and assess the safety of SoD requirements as a satisfiability
problem.

3. THE BLP AND RBAC MODELS—
PRELIMINARIES

This section outlines the BLP and RBAC security models focus-
ing only on those features used in this paper. This is standard
material [5, 7] and is not relegated to an appendix since an under-
standing of the basic concepts and familiarity with the notation
are essential for an uninterrupted presentation.

3.1. BLP—common notations

In addition to types S and O, denoting, respectively, the sets of
subjects and objects, the BLP security model considers a partial
order (L, ≤), where L denotes a set of security levels and ≤ an
ordering relation on L. A security level in our work is determined
solely on the basis of the security classification of an object.3

Security levels are associated with both objects and subjects (in
the latter case, they are often referred to as the security clearance
of the subjects).

The BLP model also considers a set of access rights,
{rd, wr, ap, ex}: rd for ‘read’ (observational rights only),
wr for ‘write’ (alterational and obervational rights), ap for
‘append’ (alterational rights only) and ex for ‘execute’.
In this paper, we shall be focusing on a reduced set of similar
access rights, namely A = {rd, ap}, with the same semantics
as in BLP. BLP’s ‘write’ access right is modelled here as
{rd, ap}, while the ‘execute’ access right is not considered
in this work.

The BLP model includes an ‘access permission matrix’ M
with indices s and o, and a set of tuples B ∈ P(S × O × PA \ ∅)

in the form of a ‘table’ with the meaning that, for any
s ∈ S, o ∈ O and x ∈ PA \ ∅, (s, o, x) ∈ B iff s is currently
performing an operation x on o.

BLP uses three functions

fS , fC : S → L, fO : O → L (1)

3 In the literature (e.g. [7]), security levels often take into account the notion
of compartments, alongside that of a security classification. Compartments are
typically used as a means of implementing the ‘need to know’ principle—a prin-
ciple that we do not consider in this work, hence our decision not to consider
compartments and equate security levels with security classifications. As indi-
cated in Section 8, the consideration of compartments is a possible avenue of
future work.

such that fO(o) represents the security level assigned to each
object o from the point of view of confidentiality (i.e. sensitiv-
ity level), fS(s) gives the maximum clearance level enjoyed by
each subject s and fC(s) the current security level of s:

∀s ∈ S • fC(s) ≤ fS(s) (2)

The triple (fS , fC , fO) is usually denoted by f. In the BLP secu-
rity model, the ss- and �-properties may be stated as follows;
see [7].

ss-Property (simple security property): a state (B, M , f) satis-
fies the ss-Property if

∀s ∈ S; o ∈ O • (s, o, v) ∈ B ⇒ fS(s) ≥ fO(o) (3)

for v ∈ PA \ ∅, v = {rd} or v = {rd, ap}. This property ensures
that a subject can only read objects of a sensitivity level lower
than the subject’s maximum clearance.

�-Property: a state (B, M , f) satisfies the �-Property if

∀s ∈ S; o ∈ O • (s, o, m) ∈ B ⇒
fC(s) ≤ fO(o)∧
(∀o′ ∈ O • (s, o′, v) ∈ B ⇒
fO(o′) ≤ fO(o)) (4)

for m, v ∈ PA \ ∅, m = {ap} or m = {ap, rd}, and v = {rd} or
v = {rd, ap}. In the interest of absolute clarity, we have repre-
sented m and v as sets and explicitly enumerated their elements.
Visualizing the lattice defined by the partial order (L, ≤) as a
directed graph with arcs running upwards from lower nodes
to higher nodes (in a vertically laid visual representation), the
two properties in (4) ensure that any information flow would
take place only upwards, that is, from entities of lower levels
of confidentiality to those of higher levels.

3.2. RBAC—common notations

Though there are many formalizations of RBAC, ours below
concentrates on the essentials in a manner to suit our purpose.
Given are the types U , R, O and Op, denoting, respectively, the
sets of all possible users, roles, objects and operations applica-
ble on objects. The elements of these types are typically referred
to here as u ∈ U , r ∈ R, o ∈ O and op ∈ Op, with subscripts to
distinguish between elements of the same type. Following the
conventional practice, we introduce a set P for permissions, but
define it as a suitably chosen subset of O × Op, rather than as
the full Cartesian product. A precise definition of P will follow
later on in Section 4.5. We introduce a relation UA (user-to-role
assignment) from U to R

UA : U ↔ R (5)

such that, for all u ∈ U and r ∈ R, (u, r) ∈ UA holds true if and
only if the user u is assigned the role r. Let us also introduce a
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relation PA (role-to-permission assignment)

PA : R ↔ P (6)

from R to P such that, for all r ∈ R, PA(r) �= ∅ and,4 for all
p ∈ P, (r, p) ∈ PA holds true if and only if the role r is explic-
itly5 assigned the permission p. The relations UA and PA will
be appropriately constrained in later sections in order to conve-
niently suit the purposes of our approach. Users enjoy clearance
levels in the same way as subjects do in the BLP model.6 In this
respect, the mappings fS , fC of Section 3.1 may apply to users
too.7 A formal treatment of the concept of RBAC sessions is
deferred until Section 6.2.

4. CONFIDENTIALITY-DRIVEN PERMISSION
INHERITANCE

This section introduces the concept of permission capacity in
MLS contexts and demonstrates how it can be used to deter-
mine the seniority level of a permission. A hierarchical ordering
on permissions, one that is based on permission capacity, is
formally defined. A novel view of permissions—one which is
akin to methods in the object-oriented paradigm—is adopted.

4.1. Permission capacity

In RBAC, a permission is regarded as an ‘approval to perform
an operation on one or more RBAC-protected objects’ [5].
Depending on the importance of the objects with which it is
associated, a permission may be assumed to carry a certain
capacity: the more highly an object is valued, the greater the
capacity of the permission. For example in a military setting, a
permission to issue a command to launch an airstrike carries a
greater capacity than a permission to merely compile an intel-
ligence report: the former grants access to a data object8 which
is naturally considered of far greater significance, hence more
highly valued than the former.

In the realm of MAC, and specifically in the BLP model, per-
mission capacity can be quantified on the basis of the security
levels assigned to objects. It may thus form the basis for defining
security levels for permissions and, consequently, a permission

4 We exclude here trivial cases of roles that do not entail any permissions. To
reduce notational clutter, we refrain ourselves from using the notation PA(|{r}|)
to denote the relational image of PA through the set {r}; instead, we resort to the
functional notation PA(r) for denoting the same image; this convention is used
throughout this paper.

5 Implicit permission-to-role assignments will be formally introduced in
Section 5.3.

6 In fact, the clearance level of a subject is derived from the clearance level
of the user on whose behalf the subject acts.

7 To reduce notational clutter, we overload the symbols fS , fC such that each
denotes two ‘sibling’ mappings: one from the set of all subjects S to L (see
Section 3.1), and one from the set of all users U to L.

8 It is assumed here that issuing a command to launch an airstrike program-
matically amounts to altering the value of a data object, e.g. a system attribute,
or variable.

seniority relation. Nevertheless, a brief account of the effect of
operations on objects is first in order.

4.2. Object operations

At the level of abstraction where security issues are addressed
from the perspective of confidentiality using the BLP model,
operations are considered not with their full functionality
but based on their eventual effect on the actual state of a
set of affected objects. In such models, operations are thus
abstractly categorized into those with observational-only capa-
bilities (‘read’ operations) and those with alterational-only
capabilities (‘append’ operations). However, although this
categorization is adequate from a confidentiality or integrity
point of view, it proves too coarse-grained in cases when
these fundamental security properties are not the only con-
cern: it may often be the case that SoD constraints must be
additionally imposed in order to prevent certain sensitive com-
binations of operations from being performed by the same user.
As an example, consider in a military context the operations
arm_missile and launch_missile. Although these operations
may be indistinguishable at a certain level of abstraction from
the eventual effect they have on the state of the affected object
(i.e. they may both be categorized as alterational-only opera-
tions), it may be required that they are not delegated to the same
user. Such a SoD requirement, however, cannot be expressed
unless the richer functional capabilities of the two operations
are considered as in the RBAC model.

4.3. An object-oriented perspective

In both the MAC and RBAC models, objects as well as oper-
ations are uniformly treated in isolation, i.e. as independent
entities, as if each operation can be applied to every object
irrespective of the kind of the object concerned or the nature of
the operation. This view may be adequate when dealing with
security concerns in a preliminary manner, but it is hardly a
realistic view when considering design issues in detail. In order
to remove this anomaly, let us group together objects that share
common operations. This is akin to grouping ‘objects’ into
‘classes’ in the object-oriented approach. Fitting in with such a
paradigm that is widely used in the design and implementation
of secure systems is an added motivation for grouping objects
in this manner. However, no claim is made here that it is a fully
fledged adoption of the object-oriented approach, as this is
beyond the scope of this paper.

Let us introduce two equivalence relations,9 RC on O and RM

on Op, respectively,10 such that, given any two objects o1 and o2,
and given any two operations op1 and op2, (o1, o2) ∈ RC is true
iff o1 and o2 belong to the same class of objects, and (op1, op2) ∈

9 Note that our choice of equivalence relations here is purely for grouping
objects sharing common operations, though there can be other equivalence rela-
tions that can capture other common characteristics.

10 C indicating the notion of ‘class’ and M the notion of ‘method’.
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RM is true iff op1 and op2 are methods applicable to objects in
the same class. The partition induced by RC in O thus represents
the set of ‘classes’ (strictly speaking a set of sets of objects), with
each element c in the quotient O\RC being interpreted as a class
c. Likewise, the partition induced by RM in Op represents the set
of methods (strictly speaking a set of sets of operations), with
any element m in the quotient Op\RM being the set of ‘methods’
belonging to a specific class. We require that O\RC and Op\RM

are equinumerous and that there exists a bijective function M

M : O\RC�→Op\RM (7)

such that, for any c ∈ O\RC ,M(c) represents the set of methods
applicable to objects in class c.

As an example, in a military context, all report data objects
(e.g. intelligence reports, compilations of intelligence reports,
‘recommendation of action’ reports etc.) may be considered to
belong to a single class c withM(c) representing the set of oper-
ations defined on these objects (e.g. CRUD11 operations).

4.4. Permissions

In this work, we choose to view permissions as atomic in the
sense that each permission can only approve a single operation
on a single object.12 Formally, the set of relevant permissions is
defined as

P = {(o, op) | ∃c ∈ O\RC; m ∈ Op\RM •

M(c) = m ∧ o ∈ c ∧ op ∈ m} (8)

It is to be noted here that the fact that two or more objects
belong to the same class, and are thus amenable to the same
set of operations, does not necessarily imply that the objects
bear the same security level. Consider, for example, the case
of two database objects: although they may belong to the same
class, they may store data of varying classification—a fact that
is inevitably reflected by the objects’ security level. Objects of
the same class may thus potentially give rise to permissions of
differing capacities.

It is also to be noted here that the introduction of atomic per-
missions does not impose an actual restriction on the number
of objects on which a subject may gain approval to operate: a
subject can always operate on a multitude of objects (from the
same or from different classes) by obtaining all the correspond-
ing individual permissions. Our choice to view permissions
as atomic can be justified on the following grounds. Firstly, it
facilitates the derivation of the capacity of a permission (see
Section 4.5) and thus allows for a neater treatment of per-
mission seniorities. Secondly, it extends the object-oriented
perspective to permissions: atomic permissions are inevitably
bundled with individual object classes in the same manner as
operations are bundled with individual object classes. This is

11 Create, Read, Update, Delete.
12 A similar, albeit less restrictive, view of permissions is adopted in [14].

in contrast to the conventional RBAC view whereby a single
permission may approve a multitude of operations on objects
irrespective of their type or characteristics.

We provide the following mapping to determine the eventual
effect that a permission has on the state of the affected object:

A : Op → (PA \ ∅) (9)

where the set A was defined in Section 3.1. Note that an opera-
tion always has a certain mode of access to the object concerned
(as understood in Section 3.1 with or without leaving an effect on
the object’s state), hence the exclusion of the empty set from the
range ofA. For example, for any op ∈ Op,A(op) = {ap} means
that op alters, but does not observe, the object with which it is
associated; similarly,A(op) = {rd} means that op observes, but
does not alter, the associated object andA(op) = {ap, rd} means
that op alters and observes the associated object.

4.5. Permission security levels

We propose that the security level of a permission be defined
by its capacity, i.e. by the security level of the object that the
permission is associated with. Formally, we have the following
definition.

Definition 4.1. �P : P → L such that

∀p ∈ P; o ∈ O; op ∈ Op • p = (o, op) ⇒
�P(p) = fO(o) (10)

We may now proceed with the definition of permission senior-
ity. For any two permissions p and p′, p′ is considered at least as
senior as p (denoted p � p′) iff:

(i) p and p′ are defined on objects o, o′ of the same secu-
rity level and p′ grants a set of access modes at least as
rich as the ones granted by p. For example, in a military
setting, a permission that allows a read-only operation
on an intelligence report is considered less senior than a
permission that grants both read and append access
to such a report.

(ii) p and p′ are defined on objects o, o′ of distinct security
levels, p grants only read access to o, p′ grants at least
read access to o′ and the security level of p′ is greater
than that of p. For instance, considering again a military
context, a permission that grantsread-only access to an
individual intelligence report is considered less senior
than a permission that grants read access to a compila-
tion of intelligence reports.13

(iii) p and p′ are defined on objects o, o′ of distinct security
levels, p grants append-only access to o, p′ grants at
least append access to o′ and the security level of p′ is

13 The compilation of intelligence reports naturally carries a higher security
level than a single intelligence report.
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less than that of p. For instance, a permission that grants
append-only access to a compilation of intelligence
reports is considered more senior than a permission that
grants append access to a corresponding ‘recommen-
dation of action’ report, one that is invariably edited on
the basis of the compilation of intelligence reports.14

Formally:

Definition 4.2. Let p, p′ ∈ P such that p = (o, op) and p′ =
(o′, op′) for any o, o′ ∈ O, op, op′ ∈ Op. Then

p � p′ ⇔(�P(p) = �P(p′) ∧ A(op) ⊆ A(op′)) (11)

∨
(�P(p) < �P(p′) ∧ A(op) = {rd}∧
A(op) ⊆ A(op′)) (12)

∨
(�P(p) > �P(p′) ∧ A(op) = {ap}∧
A(op) ⊆ A(op′)) (13)

Two permissions p and p′ are of equal seniority, denoted by
p ≈ p′, iff they share the same security level and they grant an
identical set of access modes; formally, we have the following
definition.

Definition 4.3. Let p, p′ ∈ P such that p = (o, op) and p′ =
(o′, op′) for any o, o′ ∈ O, op, op′ ∈ Op. Then

p ≈ p′ ⇔ �P(p) = �P(p′) ∧ A(op) = A(op′)

Note that permission seniority equality does not necessarily
imply permission equality (the latter being denoted as p = p′).

Theorem 4.1. The permission seniority relation (P, �) is a
partial order.

Proof. The proof is provided in Appendix A.1.

Definition 4.4. Any two distinct permissions are comparable
iff one of them is considered senior, or of equal seniority, to the
other.

Note that our definition of permission seniority constitutes a
departure from the one provided by Crampton [14] whereby, for
any two permissions p and p′, p′ is ‘senior’ to p, iff the former
enjoys a richer set of access modes on an underlying object o
(see Section 2.1). The reason for this departure is as follows. In
our work, permission seniority is introduced as a device that lays
the ground for the introduction of permission inheritance (see
Section 5.3). Let p = (o, op) and p′ = (o, op′) and suppose that

14 The ‘recommendation of action’ report naturally carries a higher security
level than the compilation of intelligence reports.

A(op) ⊂ A(op′). Given that A = {rd, ap} and on the strength
of (9), this means that A(op) = {rd} or A(op) = {ap} and that
A(op′) = {rd, ap}. In either case, although p′ can be considered
senior to p in Crampton’s standpoint, such a seniority signifies
a superfluous form of permission inheritance: any user who has
p′ can clearly access o in any access mode, irrespective of any
privilege to inheritance, as he is endowed with the full set of
access modes A. Crampton’s definition of the seniority relation
on permissions has thus certain limitations. Our Definition 4.2,
captured through predicates (11–13), not only subsumes Cramp-
ton’s notion of permission seniority, but also incorporates within
it the security levels of the objects that the permissions are asso-
ciated with. Thus, the resulting permission seniority hierarchy
is more meaningful as it encompasses more needed and relevant
aspects for defining permission seniority in MLS settings.

The seniority relation can be extended to sets of permissions:
for any two such sets S, S′, such that each set comprises solely
mutually non-comparable permissions,15 S′ is considered at
least as senior as S (denoted by S � S′) iff each permission in S
has at least one ‘at least as’ senior permission in S′. Formally,16

for any S ∈ PP, let the predicate IP(S) hold true iff S comprises
solely non-comparable permissions:

∀S ∈ PP • IP(S) ⇔
(∀p, p′ ∈ S • ¬(p � p′) ∨ p = p′) (14)

Then, continuing with the extension of the seniority relation
to sets of permissions:

∀S, S′ ∈ (PP\∅) • S � S′ ⇔
(IP(S) ∧ IP(S′)∧
∀p ∈ S • ∃p′ ∈ S′ • p � p′) (15)

Similarly, S and S′ are considered of equal seniority, denoted
by S ≈ S′, iff each permission in S has at least one permission of
equal seniority to it in S′ and vice versa; formally,

∀S, S′ ∈ (PP\∅) •

S ≈ S′ ⇔ (∀p ∈ S • ∃p′ ∈ S′ • p ≈ p′)∧
(∀p′ ∈ S′ • ∃p ∈ S • p′

≈ p) (16)

Any two distinct permission sets are comparable iff one is
considered senior, or of equal seniority, to the other.

15 As will be explained in Section 5.1, roles in our model are defined math-
ematically as sets of mutually non-comparable permissions; here we are inter-
ested in extending the seniority relations to sets of permissions that could poten-
tially be considered roles.

16 Note that in order to reduce notational clutter, we overload the symbol
� to denote three different types of seniority: seniority between permissions,
seniority between sets of permissions and seniority between roles (for the latter
type see Section 5.2). The specific type of seniority to which any given instance
of � refers is unambiguously derived from its operands. An analogous note
holds for the symbol ≈.
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4.6. Example

The purpose of this example is to illustrate the usefulness of
our model by demonstrating through a realistic application that,
under certain circumstances, confidentiality and SoD require-
ments are interwoven and may hence need to be simultaneously
satisfied. In the current section, however, we restrict ourselves
to merely illustrating how the concepts of permission capacity
and permission seniority apply to a realistic application. The
scenario described below is a simplified version of a case study
reported in [38]. The Maritime Intelligence Center (MIC) is an
organization responsible for bringing together military intelli-
gence operations. Suppose that MIC receives intelligence about
a vessel carrying illegal cargo which must be interdicted. The
intelligence is received by the Signals Intelligence (SIGINT)
and Electronic Intelligence (ELINT) Officers who are respon-
sible for composing two relevant reports, modelled here by the
objects denoted by oSI and oEI , respectively (see Fig. 1). The
security levels applicable to this application are identified as
ci, i = 1, . . . , 4, and ordered as following:

c4 < c3 < c2 < c1 (17)

This total order replaces the more general lattice of security
levels typically encountered in BLP models.

We assume that the objects oSI and oEI have the same security
level:

fO(oSI) = fO(oEI) = c4 (18)

We also assume the existence of a Tactical Analyst (TA) Offi-
cer who is responsible for compiling the SIGINT and ELINT
reports into a single tactical analysis report, modelled here by
the object denoted by oTA (see Fig. 1). The security level of oTA

equals c3:
fO(oTA) = c3 (19)

The tactical analysis report is accessible to an Intelligence
Watch Officer (IWO) who acts as a linchpin in providing data
to his/her superiors and initiating action. More specifically,
based on the tactical analysis, the IWO submits an ‘interdic-
tion recommendation report’ to the Command Duty Officer
(CDO) who is responsible for deciding whether (and when) to
issue a command for vessel interdiction. We thus discern two

oEI

c1

c4

oIR

oTA

Lowest security level

Highest security level

c2

c3

oSI

oIC

FIGURE 1. Security levels of objects.

additional objects: ‘recommendation for vessel interdiction’,
denoted by oIR, and ‘command for vessel interdiction’, denoted
by oIC . The security levels of these objects are as follows:

fO(oIR) = c2 (20)

fO(oIC) = c1 (21)

All objects of relevance to this example, along with the oper-
ations to which they are amenable, the corresponding types
of access and the relevant permissions, are summarized in
Table 1.17

It follows from Definition 4.1 that the capacity, and hence the
security level, of each permission becomes:

�P(pr
1) = �P(pa

1) = c1 (22)

�P(pr
2) = �P(pa

2) = c2 (23)

�P(pr
3) = �P(pa

3) = c3 (24)

�P(pr
4) = �P(pa

4) = �P(pr
5) = �P(pa

5) = c4 (25)

As an illustration, consider the operations rIR and rIC in
our running example. Both operations grant read-only access,
through permissions pr

2 and pr
1, to objects oIR and oIC , respec-

tively. It follows from predicates (17), (22) and (23) that pr
1

has a greater capacity than pr
2. From predicate (12) of Defi-

nition 4.2 it then follows that pr
1 is senior to pr

2, i.e. pr
2 ≺ pr

1,

depicted in Fig. 2 with an arrow from pr
2 to pr

1.18 Consider now
another pair of operations aIC and aIR, granting append-only
access to objects oIC and oIR, respectively, through permissions
pa

1 and pa
2. It follows from (13) of Definition 4.2 and, as in the

previous case, from (17), (22) and (23) that pa
1 ≺ pa

2. This cor-
responds to an arrow from pa

1 to pa
2 in Fig. 2. The reader may

note that there are two disjoint sub-graphs in the graph of Fig. 2
and, further, that one sub-graph corresponds to ‘append-only’
permissions pa

i , while the other to ‘read-only’ permissions pr
j ,

for i, j = 1 . . . 5. This is because, given any two permissions
pr

i = (oi, opm) and pa
j = (oj, opn), A(opm) ∩ A(opn) = ∅.

This means that, according to Definition 4.2, pr
i and pa

j are not
related through �, hence the absence of arrows between them.

17 All permissions used in this example are either read-only or append-
only (this is, respectively, indicated by the superscripts r and a with which per-
missions are decorated). Clearly, any two permissions—such as, for example,
pr

1 and pa
1, that grant read-only and append-only access to the same object,

have the same effect as a single permission that grants both read and append
access to that object. Nevertheless, as will become apparent in later sections,
by discerning read-only and append-only permissions, we are able to exer-
cise finer control as to which specific operations a role provides access—a fea-
ture particularly relevant when SoD constraints are considered. This is the rea-
son why no permissions that provide combined read and append access are
illustrated in this example. However, it is to be noted that, for the sake of gen-
erality, our definition of the eventual effect that a permission has on the state
of the affected object (see Definition (9) of mapping A), and hence the permis-
sion seniority relation of Definition 4.2, are not restricted to read-only and
append-only permissions but also take into account permissions that provide
combined read and append access to objects.

18 The following convention is used in Fig. 2: for any two permissions p, p′,
there exists an arrow from p to p′ iff p′ is at least as senior as p.
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TABLE 1. Objects, operations and permissions.

Objects Operations

Symbol Description Symbol Description Type of access Permissions

oIC vessel interdiction
command

rIC read [command] A(rIC) = {rd} pr
1 = (oIC , rIC)

aIC alter/issue [command] A(aIC) = {ap} pa
1 = (oIC , aIC)

oIR vessel interdiction
recommendation

rIR read [recommendation] A(rIR) = {rd} pr
2 = (oIR, rIR)

aIR alter/create [recommendation] A(aIR) = {ap} pa
2 = (oIR, aIR)

oTA tactical analysis rTA read [analysis] A(rTA) = {rd} pr
3 = (oTA, rTA)

aTA alter/create [analysis] A(aTA) = {ap} pa
3 = (oTA, aTA)

oSI SIGINT report rSI read [report] A(rSI ) = {rd} pr
4 = (oSI , rSI )

aSI alter/create [report] A(aSI ) = {ap} pa
4 = (oSI , aSI )

oEI ELINT report rEI read [report] A(rEI ) = {rd} pr
5 = (oEI , rEI )

aEI alter/create [report] A(aEI ) = {ap} pa
5 = (oEI , aEI )

pr
3

pr
1

pr
2

pr
5pr

4

c1

c2

c3

c4

pa
1

pa
2

pa
3

pa
5pa

4

FIGURE 2. Permission seniorities.

The opposite directions of the arrows in the two sub-graphs
follow as a consequence of the fact that seniority in ‘read-only’
permissions increases with increasing permission capacity,
whereas seniority in ‘append-only’ permissions decreases
with increasing permission capacity—this is formally captured
through predicates (12) and (13) of Definition 4.2.

5. SOD AND EXPLICIT PERMISSION-TO-ROLE
ASSIGNMENT

This section begins with an introduction to explicit assignment
of permissions to roles. It then defines a hierarchical ordering on
roles and proposes a formal framework for the implicit assign-
ment of permissions to roles. Section 5.4 introduces conflicting
permissions from a SoD perspective and Section 5.5 inves-
tigates how such permissions affect permission inheritance
and thus implicit permission-to-role assignments. A relevant
example is presented in Section 5.6 and, in Section 5.7, the
notion of mutually exclusive roles is formally defined.

5.1. Explicit assignment of permissions to roles

Mathematically, a role is a named collection of permissions [16].
This provides a sound basis for determining the security level
of a role from the security levels, and thus the capacities, of the
permissions assigned to it. We require that such permissions are
all of the same security level. Formally, we have the following
definition.

Definition 5.1. �R : R → L such that

∀r ∈ R; p, p′ ∈ P • {p, p′} ⊆ PA(r) ⇒
�P(p′) = �P(p) = �R(r) (26)

As will become clear later from Definition 5.3 on implicit
inheritance of junior permissions, it is futile to explicitly assign
two or more comparable permissions to a role. In the interest of
eliminating such futile assignments from our model, we impose
the following restriction:

∀r ∈ R; p, p′ ∈ P • p, p′ ∈ PA(r) ⇒
¬(p � p′) ∨ p = p′ (27)

Note that, by virtue of Definition 4.2, any two permissions
that both grant (at least) a read or an append access are com-
parable. A role can thus only be assigned a single permission
that grants a read-only access, and/or a single permission
that grants an append-only access.19 This is analogous to the
approach taken in [13] where exactly two roles reside at each
security level x: one for reading (xR) and one for writing (xW )
at level x. Formally, we have the following corollary.

19 Of course, if a role is assigned a permission that grants both a read and
an append access, then that role cannot be explicitly assigned any other per-
missions.
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Corollary 5.1. Let p, p′ ∈ P such that p = (o, op) and p′ =
(o′, op′) for any o, o′ ∈ O, op, op′ ∈ Op. Then,

∀r ∈ R • #PA(r) ≤ 2∧
(p, p′ ∈ PA(r) ∧ p �= p′ ⇒
#A(op) = #A(op′) = 1 ∧ A(op) �= A(op′))

Proof. The proof is provided in Appendix A.2.

Note that in our model, a multitude of roles may coexist at
the same security level. This constitutes a departure from the
approach in [13] and, as already mentioned, it is a prerequisite
for the incorporation of SoD constraints. Also, a role in our
model may only comprise a single permission that grants a
read-only or an append-only access. This also constitutes
a departure from the approach in [13] whereby each role nec-
essarily has read and append access to all objects that reside
at a certain security level. Our approach is more general as it
allows, for example, cases in which one or more objects are
read-only and are thus not amenable to alteration.

5.2. Role hierarchy

The hierarchical model of RBAC is founded on a role hierarchy
that mirrors the organizational role hierarchy. Mathematically,
it is based on a partial order on the set of applicable roles. In
our case, any hierarchical ordering between two (or more) roles
is naturally based on the corresponding sets of permissions that
these roles make available: the seniority of a role is directly pro-
portional to the seniority, and thus the capacity, of the permis-
sions that it entails. It follows that, for any two roles r1 and r2,
r2 is at least as senior as r1 (denoted by r1 � r2) iff the security
level of r1 is less than, or equal to, the security level of r2. For-
mally, we have the following definition.

Definition 5.2.

∀r1, r2 ∈ R • r1 � r2 ⇔ �R(r1) ≤ �R(r2)

Two roles r1 and r2 are of equal seniority, denoted by r1 ≈ r2,
iff their corresponding sets of permissions are of equal seniority
and thus have the same capacity.

Corollary 5.2. The role seniority relation (R, �) is a partial
order.

Proof. The proof follows directly from the fact that (L, ≤) is a
partial order.

Note that role seniority equality does not necessarily imply
role equality (the latter being denoted as r = r′).

In hierarchical RBAC role seniority implies role inheritance
in the sense that senior roles acquire the permissions of junior
roles [5]. This, however, is not generally the case in MLS sys-
tems as the following example demonstrates.

5.2.1. Example
Continuing the example of Section 4.6, consider the roles IWO
and CDO and assume that they are explicitly assigned the fol-
lowing permissions:

PA(CDO) = {pr
1, pa

1} (28)

PA(IWO) = {pr
2, pa

2} (29)

Note that (28) constitutes a valid permission-to-role assign-
ment since, according to (22), pr

1 and pa
1 have the same security

level and are also incomparable with each other. An analogous
argument holds for (29). CDO enjoys a greater security level
than IWO (since �P(pr

2) < �P(pr
1)) and thus, according to Def-

inition 5.2, CDO is more senior than IWO. Nevertheless, CDO
cannot acquire pa

2 for this would violate the ‘no write down’ pol-
icy leading to a potential confidentiality breach.

As will be seen in Section 5.3, role inheritance is, in our
model, being replaced by a more fine-grained direct permission
inheritance whereby individual permissions may be inher-
ited by a role r irrespective of whether these permissions are
assigned to any roles junior to r. Such a direct permission inher-
itance avoids potential confidentiality breaches such as the one
outlined above.

5.2.2. Role seniority—an alternative formulation
An alternative definition of role seniority, one which by design
avoids confidentiality breaches, can be constructed as follows.
For any two roles r1 and r2, r2 is at least as senior as r1 (denoted
r1 � r2) iff each and every permission that r1 entails has at least
one ‘at least as’ senior permission entailed by r2. Formally20:

∀r1, r2 ∈ R • r1 � r2 ⇔ PA(r1) � PA(r2). (30)

Such a formulation does imply role inheritance as in
hierarchical RBAC for it can be formally shown that, under
predicate (30), senior roles do acquire the permissions of junior
roles. In addition, it can be shown (see relevant theorem in
Appendix A.3) that such a role seniority relation is a partial
order.

Nevertheless, as the following example illustrates, such a for-
mulation may be incompatible with the view of role hierarchy in
MLS systems.

5.2.3. Example
Consider the roles CDO and IWO. Although CDO is, from a mil-
itary standpoint, senior to IWO, the set PA(CDO) cannot be con-
sidered senior to PA(IWO) as it contains at least one permission
(pa

1) which is less senior than pa
2 contained in PA(IWO). Thus

CDO cannot be considered senior to IWO in the sense of predi-
cate (30).

Generalizing, this view of role seniority is of limited use for
performing role comparisons in MLS settings: in such settings

20 Recall that the permission seniority relation is extended to sets of permis-
sions through predicates (15) and (16).
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a role will usually comprise read and append permissions to
objects of a security level equal to the role’s security level; such
permissions cannot both be junior or, for that matter, senior to
the read and append permissions comprised by any other role
of a different security level.

In this work, we choose to retain Definition 5.2 for role senior-
ity which accurately depicts the organizational view of role hier-
archy and ignore the alternative formulation provided by pred-
icate (30).

5.3. Implicit role permissions

The set of permissions allocated to a given role are defined
hitherto solely on the basis of explicit permission-to-role
assignments as described in Section 5.1. Here we extend it to
additionally take into account the inheritance of junior per-
missions: if a role r is assigned a permission p, then r is also
implicitly assigned any permission p′ for which p′ � p holds.
In order to accommodate this requirement, we introduce a rela-
tion PA� : R ↔ P which forms a superset of PA. Formally, we
have the following definition.

Definition 5.3.

PA� : R ↔ P

∀r ∈ R; p, p′ ∈ P • p � p′ ∧ p′ ∈ PA(r) ⇒ p ∈ PA�(r)
(31)

∀r ∈ R; p ∈ P • p ∈ PA�(r) ⇒
p ∈ PA(r) ∨ ∃p′ ∈ PA(r) • p � p′ (32)

The predicate (32) requires that PA� is set-theoretically the
smallest superset of PA satisfying (31). A distinctive feature
of our model is that every role r inherits implicitly all permis-
sions that are junior to the permissions explicitly assigned to
r. We refer to this as direct permission inheritance—a notion
that fundamentally differs from RBAC’s conventional view of
permission inheritance whereby r can only inherit permissions
that have been assigned to roles junior to r. Direct permission
inheritance is not definable in conventional RBAC as the latter
lacks any hierarchical ordering of permissions, similar to that
defined here on the basis of permission capacity.

Note that direct permission inheritance is the reason for
requiring in Section 5.1 that no two comparable permissions
be explicitly assigned to the same role—see predicate (27).
Suppose, for instance, that the permissions p, p′ are explicitly
assigned to the role r, and let p′ be comparable to p. Then, by
Definition 4.4, either p � p′ or p′ � p. In either case, the more
junior permission is assigned to r implicitly, by virtue of direct
permission inheritance, rendering any explicit assignment of
comparable permissions to the same role pointless.

However, there may be situations where full direct permis-
sion inheritance may not be desirable. In order to accommodate
this requirement, we introduce a relation PA�

Excl : R ↔ P

designed to exclude inheritance of any undesirable permis-
sions. More specifically, consider the relation PExcl : R ↔ P.
For any role r, PExcl(r) comprises all permissions that must be
excluded from among those directly (implicitly) inherited by r.
We may then define PA�

Excl as:

Definition 5.4.

PA�
Excl : R ↔ P

∀r ∈ R • PA�
Excl(r) = PA�(r) \ PExcl(r) (33)

The task of determining which permissions comprise
PExcl(r), i.e. which permissions (if any) must be excluded
from a role r is, of course, an application-specific one and,
therefore, is not dealt with at the current level of abstraction.

5.3.1. Example
Consider the role TA from the example of Section 4.6 and sup-
pose the following explicit permission assignment:

PA(TA) = {pr
3, pa

3} (34)

Taking into account inheritance of junior permissions, TA is
implicitly assigned the permissions pa

1, pa
2, pr

4 and pr
5 (see Fig. 2

for the relevant permission seniority relations):

PA�(TA) = {pr
3, pa

3, pa
1, pa

2, pr
4, pr

5} (35)

From Definition 5.1 it follows that TA has a security level
equal to c3. Suppose now that TA is disallowed to alter the
objects oIC and oIR (recall that these objects reside at higher
security levels than the security level of TA—we refer the
reader to Table 1 for more details). Consequently, the permis-
sions pa

1 and pa
2 belong to the set PExcl(r) and must therefore

be excluded from the set PA�(TA):

PA�
Excl(TA) = {pr

3, pa
3, pr

4, pr
5} (36)

5.4. SoD and conflicting permissions

SoD is a fundamental principle in computer security [3]. It states
that if a sensitive task requires n distinct operations for its com-
pletion, k (for k < n) of these operations—and hence the corre-
sponding permissions—are considered conflicting and must be
performed by different users.

One approach to enforce an SoD policy is through static SoD
(SSoD) policies. As reported in [25], each SSoD policy is an
objective that specifies the minimum number of users that are
allowed to collectively possess all permissions for the comple-
tion of a task. Such an objective is typically enforced in RBAC,
and thus in this work too, via mutual exclusion constraints that
limit the role membership of users and ultimately ensure ade-
quate permission-to-user assignments. In [25], such constraints
are termed SMER constraints. Although SMER constraints are
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suitable for enforcing SoD policies, the same cannot be claimed
about a second kind of constraints, the so-called dynamic mutu-
ally exclusive role (DMER) constraints [25]. The reason for this
is that DMER constraints do not limit the role membership of
users but, instead, exclude mutually exclusive roles from RBAC
sessions; as discussed in Section 6.2, this is not appropriate for
the enforcement of SoD policies. Hence we limit ourselves to
SMER constraints.

The ability of SMER constraints to successfully enforce
an SSoD policy crucially depends upon how permissions are
assigned to roles: for instance, conflicting permissions may
never be assigned to the same role, for otherwise they may be
possessed by a single user. Let us introduce the relation PConf
to formally capture conflicting permissions:

PConf : P ↔ P (37)

For any p ∈ P, the set PConf (p) contains exactly those per-
missions that are in conflict with p. It is assumed here that two
permissions are considered conflicting iff their corresponding
operations are considered conflicting.21 Clearly, PConf is an
irreflexive and symmetric relation:

∀p ∈ P • p �∈ PConf (p) (38)

∀p, p′ ∈ P • p ∈ PConf (p′) ⇒ p′ ∈ PConf (p) (39)

Crampton [12] claims that the existence of a role hierar-
chy facilitates the specification of SoD constraints because it
reflects the structure of the underlying organization. We believe
that the existence of a permission hierarchy, such as the one
proposed in this work, further reinforces this facilitation by
allowing SMER constraints to be derived from correspond-
ing static mutually exclusive permission constraints. It is also
to be noted here that in our approach, permission conflicts
are task-agnostic; i.e. any two permissions—and hence the
operations that they entail—are considered conflicting inde-
pendently of the task as part of which these operations are being
performed. This is in line with BLP where there is generally
no notion of a task and any restrictions are placed directly on
individual actions.

5.5. Mutually exclusive permissions and inheritance

The introduction of conflicting permissions naturally affects
the manner in which permissions are allocated to roles. We
are interested in ensuring that any two conflicting permis-
sions are mutually exclusive, i.e. that they cannot be made
available through the same role. The permissions (explicitly
or implicitly) allocated to a role must thus not be conflicting.
To accommodate this requirement, we introduce the function
CFP� which associates with any role r the sets of permissions
drawn from the powerset PPA�

Excl(r) that do not contain any

21 Recall from Section 4.4 that permissions in our work are atomic and thus
each permission entails a single operation.

conflicting permissions. More specifically, CFP�(r) comprises
all those elements of PPA�

Excl(r) that are set-theoretically the

largest subsets of PA�
Excl(r) that comprise solely non-conflicting

permissions. Formally, we have the following definition.

Definition 5.5. CFP� : R → PPP such that, for any r ∈ R,

CFP�(r) =
{S ∈ PPA�

Excl(r) | ∀p ∈ PA�
Excl(r) •

p ∈ S ⇔ ∀p′ ∈ S • (p, p′) �∈ PConf } (40)

For any role r, the sets of permissions that are made avail-
able through r is drawn from the set CFP�(r). These are essen-
tially all the permissions explicitly or implicitly assigned to r
after the subtraction of any conflicting permissions. In the case
of there being two or more distinct elements in CFP�(r), the
one that will be used for specifying the permissions entailed by
r must include the set PA(r), i.e. the complete set of permissions
explicitly assigned to r. This is because the inheritance of junior
permissions by a role should by no means undermine the role’s
ability to perform the core operations explicitly assigned to it. Of
course, this is only possible if there are no conflicting permis-
sions in PA(r). To satisfy this requirement, let us introduce the
set IEP (stands for ‘incomplete explicit permissions’) which:

(1) equals the empty set if the set of permissions explicitly
assigned to r contains any conflicting permissions;

(2) comprises exactly those elements of CFP�(r) that do
not include PA(r), otherwise.

Formally, we have the following definition.

Definition 5.6. IEP : R → PPP such that, for any r ∈ R,

IEP(r) = ∅, if ∃p, p′ ∈ PA(r) • (p, p′) ∈ PConf

= {S ∈ CFP�(r) | PA(r) �⊆ S}, otherwise.

The role of the functionIEP in determining an appropriate set
of permissions is further demonstrated through the example of
Section 5.6.

In case there are two or more elements in CFP�(r) that sub-
sume PA(r), the choice as to which one is selected for specifying
the permissions entailed by r is non-deterministic and dealt with
at an application-specific level by a security administrator. Sim-
ilarly, in case there are no elements in CFP�(r) that subsume
PA(r), some element of CFP�(r) is non-deterministically cho-
sen for defining the permissions allocated to r. Consequently, at
the current level of abstraction, we merely assert that the set of
permissions assigned to r is drawn from CFP�(r) \ IEP(r). In
this respect, we introduce the relation PA�

SoD to associate with
each role an appropriate set of non-conflicting permissions; for-
mally, we have the following definition.

Definition 5.7. PA�
SoD : R ↔ P such that

∀r ∈ R • PA�
SoD(r) ∈ CFP�(r) \ IEP(r) (41)
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The case of CFP�(r) being a singleton set signifies that
PA�

Excl(r) contains no conflicting permissions in which case

CFP�(r) clearly encompasses PA�
Excl(r).

Note that it is impossible for the empty set to be a member of
CFP�(r). This is because, by definition (see Section 3.2), each
role is assigned a non-empty set of permissions and in the event
of there being any conflicting permissions among them, CFP(r)
is made up of permissions assigned to r by removing just one
permission at a time from each conflicting pair of permissions.
Therefore, elements in CFP�(r) always contain at least one per-
mission. Formally, we have the following corollary.

Corollary 5.3. ∀r ∈ R • PA�
SoD(r) �= ∅.

Proof. The proof follows directly from Definitions 5.5
and 5.7.

Finally, note that SoD-derived mutual exclusion constraints
are substantially different from the permission exclusion restric-
tions captured through the PExcl relation of Section 5.3. The lat-
ter merely specify sets of permissions that are beyond the scope
of a role and must thus be excluded from the permissions implic-
itly assigned to it. The former specify sets of permissions that are
excluded from the permissions assigned to a role, not because
they are beyond the role’s scope, but because they cannot co-
exist with other permissions that the role entails.

5.6. Example

Continuing the example of Section 4.6, consider the roles IWO,
CDO, TA, SIGINT , ELINT and assume that they are explicitly
assigned the following permissions (see Table 1 for the relevant
permission definitions):

PA(CDO) = {pr
1, pa

1} (42)

PA(IWO) = {pr
2, pa

2} (43)

PA(TA) = {pr
3, pa

3} (44)

PA(SIGINT) = {pr
4, pa

4} (45)

PA(ELINT) = {pr
5, pa

5} (46)

From Definition 5.1 it follows that these roles have the follow-
ing security levels:

�R(CDO) = c1 (47)

�R(IWO) = c2 (48)

�R(TA) = c3 (49)

�R(SIGINT) = �R(ELINT) = c4 (50)

Taking into account inheritance of junior permissions, each
role is implicitly assigned the following additional permissions
(see Fig. 2 for the relevant permission seniority relations):

PA�(CDO) = {pr
1, pa

1, pr
2, pr

3, pr
4, pr

5} (51)

PA�(IWO) = {pr
2, pa

2, pa
1, pr

3, pr
4, pr

5} (52)

PA�(TA) = {pr
3, pa

3, pa
1, pa

2, pr
4, pr

5} (53)

PA�(SIGINT) = PA�(ELINT) =
{pr

4, pa
4, pa

1, pa
2, pa

3, pa
5, pr

5} (54)

Assume the following permission–exclusion requirements:

PExcl(CDO) = ∅ (55)

PExcl(IWO) = ∅ (56)

PExcl(TA) = {pa
1, pa

2} (57)

PExcl(SIGINT) = PExcl(ELINT) = {pa
1, pa

2, pa
3} (58)

Taking into account the above permission exclusions, each
role is implicitly assigned the following permissions:

PA�
Excl(CDO) = {pr

1, pa
1, pr

2, pr
3, pr

4, pr
5} (59)

PA�
Excl(IWO) = {pr

2, pa
2, pa

1, pr
3, pr

4, pr
5} (60)

PA�
Excl(TA) = {pr

3, pa
3, pr

4, pr
5} (61)

PA�
Excl(SIGINT) = PA�(ELINT) = {pr

4, pa
4, pa

5, pr
5} (62)

Assume now the following SoD constraints:

(1) A subject that composes a recommendation for vessel
interdiction (operation aIR of Table 1) must not be able
to issue a command for vessel interdiction.

(2) A subject that composes the SIGINT report (operation
aSI of Table 1) must not be able to compose an ELINT
report.

These constraints give rise to the following permission conflicts:

pa
1 ∈ PConf (pa

2) (63)

pa
5 ∈ PConf (pa

4) (64)

We are now ready to apply the function CFP� in order to
determine the allowable permissions that can be allocated to
each role:

CFP�(CDO) = {{pr
1, pa

1, pr
2, pr

3, pr
4, pr

5}} (65)

CFP�(IWO) = {{pr
2, pa

2, pr
3, pr

4, pr
5}, {pr

2, pa
1, pr

3, pr
4, pr

5}} (66)

CFP�(TA) = {{pr
3, pa

3, pr
4, pr

5}} (67)

CFP�(SIGINT) = CFP�(ELINT) =
{{pr

4, pa
4, pr

5}, {pr
4, pa

5, pr
5}}. (68)

Finally, for each role r we need to select an appropriate ele-
ment of CFP�(r) which will represent the set of permissions
made available through r. Recall from Section 5.5 that such
a set of permissions should contain the core permissions that
have been explicitly assigned to r.22 To this end, we first apply
the function IEP to r in order to discern all those elements

22 Providing, of course, that the permissions explicitly allocated to r do not
comprise any conflicting permissions.
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of CFP�(r) that do not include the full set of permissions
explicitly assigned to r. By removing these elements from
CFP�(r), we ensure that the element of CFP�(r) that will be
ultimately chosen to represent the set of permissions offered
through r necessarily contains all those permissions explicitly
assigned to r.23 Applying IEP to the roles of this example thus
yields:

IEP�(CDO) = ∅ (69)

IEP�(IWO) = {{pr
2, pa

1, pr
3, pr

4, pr
5}} (70)

IEP�(TA) = ∅ (71)

IEP�(SIGINT) = {{pr
4, pa

5, pr
5}} (72)

IEP�(ELINT) = {{pr
4, pa

4, pr
5}} (73)

Note that in (69) and (71) above, the application of IEP
yields the empty set not because the permissions explicitly
assigned to CDO and TA contain conflicting permissions, but
because CFP�(CDO) and CFP�(TA) comprise a single ele-
ment that includes all permissions explicitly assigned to CDO
and TA, respectively.

From the sets of allowable permissions that each role is
entitled to, the following final allocations are selected, after
substracting the sets of permissions returned by the application
of the function IEP:

PA�
SoD(CDO) = {pr

1, pa
1, pr

2, pr
3, pr

4, pr
5} (74)

PA�
SoD(IWO) = {pr

2, pa
2, pr

3, pr
4, pr

5} (75)

PA�
SoD(TA) = {pr

3, pa
3, pa

2, pr
4, pr

5} (76)

PA�
SoD(SIGINT) = {pr

4, pa
4, pr

5} (77)

PA�
SoD(ELINT) = {pr

5, pa
5, pr

4} (78)

Note that, since all the above roles are explicitly assigned
solely non-conflicting permissions, the sets of permissions ulti-
mately made available through them include these explicitly
assigned permissions.

5.7. Conflicting and mutually exclusive roles

Two roles are considered conflicting iff they entail mutually
exclusive permissions. Formally, we devise the mapping RConf
which, for any role r, returns all those roles that are conflicting
with r.

23 Note that, in the case that the permissions explicitly assigned to r contain
conflicting permissions, then the full set of permissions explicitly assigned to
r cannot be made available through r. In such a case, none of the elements of
CFP�(r) contains the full set of permissions explicitly assigned to r (recall
from Definition 5.5 that CFP�(r) comprises solely sets of permissions that
do not contain any conflicting permissions). The application of IEP to r thus
returns the empty set as there are no elements of CFP�(r) to be excluded from
the final choice of permissions made available through r.

Definition 5.8. RConf : R ↔ R such that

∀r, r′ ∈ R •

(r, r′) ∈ RConf ⇔ ∃p ∈ PA�
SoD(r); p′ ∈ PA�

SoD(r′) •

(p, p′) ∈ PConf

Corollary 5.4. RConf is an irreflexive and symmetric
relation:

∀r ∈ R • r �∈ RConf (r) (79)

∀r, r′ ∈ R • r ∈ RConf (r′) ⇒ r′ ∈ RConf (r) (80)

Proof. The proof is provided in A.4 .

Referring to our running example (see Section 5.6), it follows
from predicates (74) and (75) that the roles CDO and IWO are
conflicting since they share the conflicting permissions pa

1 and
pa

2. The same applies to the roles SIGINT and ELINT .

6. USER-ROLE INVOCATION

This section formally defines a suitable user-to-role assign-
ment relation that limits the role membership of users to
non-conflicting roles. A formal treatment of RBAC sessions is
also presented and the unsuitability of DMER constraints for
the enforcement of SoD policies is demonstrated.

6.1. Role-to-user assignment

A user u is eligible to invoke a role r if u’s maximum clearance
fS(u) dominates the security level of r. Formally, we have the
following definition.

Definition 6.1.

∀u ∈ U ; r ∈ R • r ∈ UA(u) ⇒ �R(r) ≤ fS(u) (81)

We are interested in ensuring that any two conflicting roles
are mutually exclusive, i.e. they cannot be made available to
the same user.24 As argued in [25], SMER constraints enforce
an SoD policy by restricting the roles that can be assigned
to a user u via the UA relation. To accommodate such con-
straints, we follow an approach analogous to the one described
in Section 5.1 and introduce the function CFR, which asso-
ciates with any user u the sets of roles drawn from the powerset
PUA(u) that do not contain any conflicting roles. More specif-
ically, CFR(u) comprises all those elements of PUA(u) that
are set-theoretically the largest subsets of UA(u) that comprise
solely non-conflicting roles. Formally, we have the following
definition.

24 In this work, we only consider pairwise conflicting roles. Generalized
t-out-of-m (t, m ∈ Z) constraints such as the ones considered in [25], in which
a user cannot be a member of t or more roles in a set {ri|i = 1, . . . , m} of roles,
are deferred for future work.
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Definition 6.2. CFR : U → PPR such that for any u ∈ U:

CFR(u) =
{S ∈ PUA(u)| (∀r ∈ S • S ∩ RConf (r) = ∅)∧

∀r ∈ UA(u) • r �∈ S ⇒∃r′ ∈ S •

(r, r′) ∈ RConf }
For any user u, the set of roles that are made available to u

is drawn from the set CFR(u). In the case of there being two
or more distinct elements in CFR(u), the choice as to which
one will be used for specifying the roles assigned to u is non-
deterministic and dealt with at an application-specific level by
a security administrator. Consequently, at the current level of
abstraction, we merely assert that the set of roles assigned to
u is drawn from the set CFR(u), without being specific about
which element of CFR(u) that is. In this respect, we introduce
the relation UASoD to associate with each user an appropriate
set of non-conflicting roles; formally, we have the following
definition.

Definition 6.3. UASoD : U ↔ R such that:

∀u ∈ U • UASoD(u) ∈ CFR(u) (82)

6.1.1. Example
Continuing the example of Section 5.6, assume a user u whose
maximum clearance is equal to c2:

fS(u) = c2 (83)

From Definition 6.1 it follows that u can potentially be assigned
the following roles:

UA(u) = {IWO, TA, SIGINT , ELINT} (84)

Nevertheless, as discussed in Section 5.7, certain of these roles
are pairwise conflicting and thus mutually exclusive. Taking
into account such role conflicts, the function CFR yields

CFR(u) = {{IWO, TA, SIGINT}, {IWO, TA, ELINT}} (85)

It follows that UASoD(u) equals either {IWO, TA, SIGINT} or
{IWO, TA, ELINT}.

6.2. Sessions

RBAC sessions are defined through two functions

user : Session → U (86)

roles : Session ↔ R (87)

such that
dom user = dom roles (88)

where Session denotes the set of all possible session identifiers.
The above are defined such that, for any session s ∈ Session,

user(s) denotes the user on whose behalf the session s is run
and roles(s) denotes the roles invoked by the session s. They
are subject to the following constraint:

∀s ∈ dom user; u : U • user(s) = u ⇒
roles(s) ⊆ UASoD(u) (89)

As reported in [13], a user acting through a session is a subject
in the BLP sense. In this respect, for any session s, user(s) is a
member of the set of all subjects S:

∀s ∈ dom user • user(s) ∈ S (90)

In any session s, a user u can only activate roles whose secu-
rity levels are identical to u’s current clearance fC(u):

∀s ∈ dom user • ∀r ∈ roles(s) • �R(r) = fC(user(s)) (91)

6.2.1. Example
Continuing the example of Section 6.1.1, let UASoD(u) =
{IWO, TA, SIGINT}. It follows that the user u can activate three
separate sessions, say s1, s2 and s3, such that

roles(s1) = {IWO} (92)

roles(s2) = {TA} (93)

roles(s3) = {SIGINT} (94)

None of the roles IWO, TA, SIGINT can coexist in the same ses-
sion as they are of differing security levels. Note that for sessions
s2 and s3 to be activated, u’s current clearance must be down-
graded from c2 (of equation (83)) to c3 and c4, respectively.25

As we would expect, no single user session can comprise con-
flicting roles.

Corollary 6.1.

∀s ∈ Session; r ∈ R • r ∈ roles(s) ⇒
RConf (r) ∩ roles(s) = ∅ (95)

Proof. The proof follows directly from the fact that, accord-
ing to (89), roles(s) is a subset of UASoD(user(s)) and that,
according to Definition 6.3, UASoD(user(s)) comprises solely
non-conflicting roles.

The same holds for the roles activated across user sessions:

Corollary 6.2.

∀u ∈ U ; r1, r2 ∈ R • r1, r2 ∈
⋃

s∈user−1(u)

roles(s) ⇒

r1 �∈ RConf (r2) (96)

25 In this work we do not examine administrative operations such as the ones
performed for downgrading or, for that matter, upgrading a user’s clearance.
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Proof. The proof follows directly from the fact that,
according to (89), roles(s) (for all s ∈ user−1(u)) is a sub-
set of UASoD(user(s)) and, according to Definition 6.3,
UASoD(user(s)) comprises solely non-conflicting roles.

As stated in Section 5.4, DMER constraints are, in contrast to
SMER constraints, unsuitable for enforcing SoD policies [25].
DMER constraints essentially stipulate that any two roles acti-
vated within, or across, a user’s currently activated sessions
must not be conflicting. As described in [25], consider the
case in which an SoD policy states that the operations op1 and
op2, accessible through the permissions p1 and p2, respec-
tively, must not be performed by the same user u. Let p1 and
p2 be made available through the roles r1 and r2, respectively.
Clearly, p1 and p2 are conflicting, as are the roles r1 and r2;
see Definition 5.8. Suppose now that r1 is present in one of u’s
currently activated sessions, whereas r2 is not. There is nothing
that prevents u from ending the session comprising r1 (as well
as any other sessions comprising roles conflicting with r2) and
then starting a session that comprises r2. This way u poten-
tially violates the SoD policy (by obtaining the right to perform
both op1 and op2) while not violating any DMER constraint.
As stated [25], DMER constraints are motivated by, and thus
suitable for the expression of, the least-privilege principle.

7. CONFIDENTIALITY-DRIVEN SMER IN MAC

This section formally bridges the BLP and RBAC security
models. It also demonstrates that the Simple Security and
�-properties are satisfied by the SoD-aware construction pre-
sented in the previous sections. In addition, it demonstrates that
the proposed model precludes any single user from possessing
conflicting permissions, hence from performing conflicting
operations.

7.1. Bridging blp and rbac

Given u ∈ U , o ∈ O and v ∈ PA \ ∅, BLP uses the predicate
(u, o, v) ∈ B to signify the state in which a user u is performing
an operation with access rights v on an object o; see Section 3.1.
In our RBAC construction incorporating SoD, such a predicate
acquires the following meaning.

Definition 7.1.

∀u ∈ U ; o ∈ O; v ∈ PA \ ∅ •
(u, o, v) ∈ B ⇔∃s ∈ Session; r ∈ R; op ∈ Op •

u = user(s) ∧ r ∈ roles(s)∧
A(op) = v ∧ (r, (o, op)) ∈ PA�

SoD

(97)

In other words, (u, o, v) ∈ B is true iff a user u is running a ses-
sion s in the capacity of a role r, which permits the operation op
on object o—an operation that has the same effect on the state

of o as v. It is to be noted here that the pair (o, op) may not nec-
essarily form a permission that has been explicitly assigned to r
through the relation PASoD; indeed, (o, op) may be a permission
that is implicitly assigned to r by virtue of the relation PA�

SoD.
The above definition accurately interprets our understanding of
the predicate (u, o, v) ∈ B in terms of the elements in the theory
we have been constructing so far.

7.1.1. Example
Continuing the example of Section 6.2.1, let the user u activate
the session s1 in order to:

(i) read the tactical analysis report modelled by the object
oTA (see Section 4.6 and Table 1);

(ii) create a vessel interdiction recommendation object oIR

(see Section 4.6 and Table 1).

Through s1, the user invokes the role IWO and hence, accord-
ing to (75), obtains the permissions pr

3, pa
2 and pr

2 defined in
Table 1 by the pairs (oTA, rTA), (oIR, aIR) and (oIR, rIR), respec-
tively. Given that A(rTA) = A(rIR) = {rd} and A(aIR) = {ap}
(see Table 1), from Definition 7.1 it follows that the triples
(u, oTA, {rd}), (u, oIR, {ap}) and (u, oIR, {rd}) belong to the set
B, signifying that u is reading the object oTA while modifying
and reading the object oIR.

7.2. Fundamental security properties

We now present three important theorems. Our objective is
to demonstrate formally that the SoD-aware confidentiality
driven RBAC construction presented in this paper meets cer-
tain fundamental security properties, specifically: (a) that it
satisfies the Simple Security and �-Confidentiality properties,
as understood in BLP, and (b) that it prevents a user from per-
forming conflicting operations. The context of these theorems
is the RBAC version developed here, as the sets U , O, Op, A
and the state B appearing in these theorems are shared by both
RBAC and BLP.

Theorem 7.1 (ss-Property).

∀u ∈ U ; o ∈ O; v ∈ PA \ ∅ • (u, o, v) ∈ B ∧ rd ∈ v ⇒
fO(o) ≤ fS(u)

Proof. The proof is provided in A.5.

Theorem 7.2 (�-Property).

∀u ∈ U ; o ∈ O; v ∈ PA \ ∅ • (u, o, v) ∈ B ∧ ap ∈ v ⇒
fC(u) ≤ fO(o)

(98)

∀u ∈ U ; o, o′ ∈ O; v, v′ ∈ PA \ ∅ •

(u, o, v) ∈ B ∧ ap ∈ v ∧ (u, o′, v′) ∈ B ∧ rd ∈ v′ ⇒
fO(o′) ≤ fO(o) (99)
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Proof. The proof is provided in A.6.

Theorem 7.3 (SoD property).

∀u ∈ U ; o, o′ ∈ O; v, v′ ∈ PA \ ∅; op, op′ ∈ Op •
(u, o, v) ∈ B ∧ A(op) = v∧
A(op′) = v′∧
(o′, op′) ∈ PConf ((o, op))

⎫⎬
⎭ ⇒ (u, o′, v′) �∈ B (100)

Proof. The proof is provided in A.7.

7.2.1. Example
Continuing the example of Section 7.1.1, recall from equation
(83) that the maximum clearance of user u is c2. From Theo-
rem 7.1 it follows that u can only read objects whose security
level is not higher than c2. This is indeed the case as, according to
(75), the user can only obtain read access to the objects oIR, oTA,
oSI and oEI through the permissions pr

2, pr
3, pr

4 and pr
5, respec-

tively; according to Fig. 1, none of the security levels of these
objects exceeds c2. The same holds for the rest of the observa-
tional accesses that u can potentially be granted by invoking the
roles in sessions s2 and s3.

From predicate (98) of Theorem 7.2 it follows that u can
only alter objects whose security level is not lower than the cur-
rent clearance c2 of u.26 This is indeed the case as, according
to (75), the user can only obtain append access27 to oIR—an
object whose security level is, according to Fig. 1, equal to c2.
The same applies to the rest of the append accesses that u can
be potentially granted through the invocation of the roles in
sessions s2 and s3.28

From predicate (99) of Theorem 7.2 follows that u can only
alter objects whose security level is not lower than the security
levels of any objects that u can observe. This is indeed the case
as, according to (75), u can only obtain append access to the
object oIR, while any observational accesses are confined to the
objects oIR, oTA, oSI and oEI . According to Fig. 1, none of the
security levels of the latter objects exceeds the security level of
oIR. The same applies to the rest of the objects that u can access
by invoking the roles in sessions s2 and s3.

Finally, Theorem 7.3 maintains that if u performs an operation
op, then u cannot also perform any other operation that is con-
flicting with op. This is indeed the case as, according to (63) and
(64), there are two pairs of conflicting permissions: (pa

1, pa
2) and

(pa
4, pa

5). According to (75), u only obtains permission pa
2 from

the first pair, whereas none of the permissions of the second pair
are obtainable by u. This means that u does not perform any of
the conflicting operations aSI and aEI (accessed, according to
Table 1, through permissions pa

4 and pa
5, respectively), whereas

u can perform the operation aIR but not its conflicting operation

26 We are assuming here that u acts through session s1 and thus u’s current
clearance fC(u) is equal to u’s maximum clearance c2.

27 Through the permission pa
2.

28 Recall that, for u to activate s2 or s3, u’s current clearance must be down-
graded to c3 or c4, respectively.

aIC (these operations are accessed through permissions pa
2 and

pa
1, respectively).

8. CONCLUSIONS AND FUTURE WORK

SoD is widely considered to be a seminal principle in computer
security [3]. Although it has been studied extensively within the
context of role-based access control models [4, 9–11], the same
cannot be claimed for Multi-Level MAC Security models. One
reason for this shortcoming is the fact that the expression of
SoD constraints requires an approach whereby the operations
that a user is allowed to perform are determined on the basis of
the effect that each operation has on individual objects. Such
an approach does not conform with the abstract view of opera-
tions typically encountered in MAC models—a view whereby
the operations that a user is permitted to perform on objects are
determined on the basis of a comparison between the user’s
clearance, on the one hand, and the security level of the objects,
on the other. Such a view overlooks, in essence, the effect that
these operations bring about on individual objects. In order to
enable the expression of SoD constraints, this work adopts a
slightly detailed view of RBAC whereby objects are associated
with relevant operations with applicable functional capabil-
ities. Naturally, this view fits in well with the conventional
object-oriented perspective whereby operations are defined as
part of individual classes of objects.

Additionally, this work takes advantage of one of RBAC’s
important virtues, namely its generality in being able to emulate
the BLP security model [13], thus enabling Multi-level MAC
Security models to express SoD constraints. An important fea-
ture of our framework is that each permission is assumed to
possess a certain capacity, determined by the BLP security level
of the object with which it is associated. This helps character-
ize permissions with security levels and, in turn, in defining a
partial order on permissions and, thus, a permission hierarchy.
Such a hierarchy serves two purposes:

(i) On the one hand, it provides a formal basis for defining
role seniority and thus a hierarchical ordering on roles.
Owing to its derivation on the basis of the capacity of
the permissions that it comprises, the seniority of a role
reflects the security level of objects accessible through
those permissions. This provides an intuitive definition
of role seniority and promotes the view whereby roles
are not by themselves carriers of seniority values but a
named collection of permissions [16], i.e. an auxiliary
mechanism introduced for simplifying security admin-
istration by facilitating the assignment of permissions to
users.

(ii) On the other hand, it provides the means to express
SoD constraints in terms of conflicting permissions
that cannot be assigned to the same role. This naturally
extends the hierarchical ordering of roles with mutually
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exclusive roles, that is, roles that cannot be assigned to
the same user.

In addition, our framework essentially bridges the BLP and
RBAC worlds, while retaining the former’s core security prop-
erties, namely the Simple Security Property and the �-Property.

The notion of permission hierarchy offers certain addi-
tional advantages. Firstly, it gives rise to the concept of direct
permission inheritance (see Section 5.3), whereby a role r
automatically inherits all those permissions that are junior
to the permissions explicitly assigned to it, in contrast to the
indirect permission inheritance, as understood generally in
RBAC, whereby r can inherit only those permissions assigned
explicitly to roles junior to r. In our view, direct permission
inheritance enables greater control over how permissions are
assigned, implicitly or otherwise, to roles and, hence, to users.
Secondly, defining SoD constraints directly in terms of con-
flicting permissions offers greater assurance than defining them
indirectly through conflicting roles with no reference to the
actual conflicting permissions [27].

As far as future work is concerned, we intend to pursue two
main directions of research: (a) investigation of ways to extend
and reinforce our framework; (b) investigation of automated
methods and tools for policy validation and verification. More
specifically, with respect to the first direction we intend to do
the following:

(i) Investigate roles that span over different compartments
(in the BLP sense). More specifically, we are interested
in enriching our framework with roles that encompass
permissions from different compartments, and studying
the effect that such roles have on role hierarchies. Con-
sideration of such roles is anticipated to increase the gen-
erality of our approach.

(ii) Dispense with pairwise-conflicting roles through the
adoption of the more generalized t-out-of-m (t, m ∈ N)
SoD constraints [25], in which a user cannot be a
member of t or more roles in a set consisting of m roles.

(iii) Incorporate in our framework administrative operations
such as the ones performed for downgrading or upgrad-
ing a user’s clearance.

(iv) Investigate the feasibility of extending our atomic per-
missions to take into account environmental and con-
textual attributes. More specifically, we are interested
in exploring the effect of such attributes on permission
and role hierarchies. Such attributes would enhance the
generality of our framework by incorporating features
from Attribute-Based Access Control.

With respect to the second direction, we intend to investigate
methods and tools for verifying whether policies expressed
through particular configurations of our framework capture
specific security properties. Policy analysis and verification is a
well-known problem of access control models [39]. Automated
verification through model checking has been proposed as a

solution to this problem, and several relevant approaches have
been reported in the literature, for example [39–43]. Regard-
ing our work, we intend to investigate an approach akin to the
one proposed in [43], which has the capability to model-check
an entire configuration of an access control framework rather
than individual policies. Such an approach would enable us to
verify whether a user is allowed to perform a certain operation
on a particular object in a given configuration, i.e. for a given
set of object security levels, and allowable permission-to-role
and role-to-user assignments. This requires the expression of a
particular configuration of our framework in the specification
language of a model checker, i.e. in the form of a deterministic
Finite State Machine. It also requires the expression of access
control properties in the model checker’s property language as
temporal logic formulae (e.g. in CTL or LTL). The verifica-
tion capabilities of the model checker may then be exploited in
order to automatically verify that the specified configuration
possesses the expressed properties.

A different, albeit related, avenue of research that we
could potentially explore is the application of ‘light-weight’
approaches29 to policy validation such as the one reported
in [44, 45]. This entails the use of UML diagrams for repre-
senting the various classes of our framework (e.g. permissions,
roles, users etc.), and their relationships (e.g. permission-
to-role assignments, role-to-user assignments etc.). It also
entails the use of some underlying formalism such as OCL30 or
RCL2000 [27] for specifying constraints (e.g. exclusion con-
straints such as the ones captured through the relation PA�

Excl in
Definition 5.4, or SoD constraints). Through the use of a tool
such as RAE (RBAC Authorization Environment) [45], it is
then possible to automatically generate system states (repre-
sented as UML object diagrams) and check them against the
specified constraints. Additionally, we could also consider the
provision of a facility analogous to the one offered by RAE,
which allows the automatic generation of code implement-
ing a particular configuration of our framework subject to any
relevant constraints. Overall, we expect such a UML-based
approach to fit in well with our object-oriented perspective of
objects and operations outlined in Section 4.3.

Finally, we intend to investigate an approach akin to the
one proposed in [46], which expresses BLP in terms of UML
diagrams and then automatically translates these diagrams
into the input language of a model checker through the use
of appropriate algorithms such as, for example, the Hugo/RT
algorithm [47]. The desirable properties (e.g. the �-Property)
against which the BLP model is to be verified are formulated
in LTL. The verification capabilities of the model checker
may then be exploited in order to automatically verify that the
specified BLP configuration possesses the desired properties.

29 ‘Light-weight’ in the sense that they avoid direct use of model checking
tools which are cumbersome for non-experts. This may potentially render our
framework usable by a wider audience.

30 OCL is UML’s constraint specification language.
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APPENDIX

The formal proofs in this appendix are Fitch-style. The follow-
ing notation is used. A horizontal line indicates a hypothesis.
A vertical line indicates the scope of a hypothesis. The annota-
tions x-I and x-E, where x is any logical quantifier or connec-
tive, denote the introduction and elimination, respectively, of the
quantifier or connective. x-A, where x is any logical connective,
stands for the associative property that the connective may pos-
sess. The abbreviations Dk, Tk and Ck (for integer k) indicate,
respectively, Definition k, Theorem k and Corollary k.

A.1. Proof of Theorem 4.1

Reflexivity

Suppose arbitrary p ∈ P and let p = (o, op) for some
o ∈ O, op ∈ Op.

1 �P(p) = �P(p) ∧ A(op) ⊆ A(op) (tautology)

2 (�P(p) = �P(p) ∧ A(op) ⊆ A(op))∨ 1, ∨-I

(�P(p) < �P(p) ∧ A(op) = {rd}∧
A(op) ⊆ A(op))∨
(�P(p) > �P(p) ∧ A(op) = {ap}∧
A(op) ⊆ A(op))

3 p � p 2, D4.2

4 p � p 1, 3, ⇒-I
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Antisymmetry

Suppose arbitrary p, p′ ∈ P and let p = (o, op), p′ = (o′, op′) for
some o, o′ ∈ O, op, op′ ∈ Op. Also, let the abbreviations:

L1 =̂ �P(p) = �P(p′) ∧ A(op) ⊆ A(op′) (A.1)

R1 =̂ �P(p′) = �P(p) ∧ A(op′) ⊆ A(op) (A.2)

L2 =̂ �P(p) < �P(p′) ∧ A(op) = {rd}∧
A(op) ⊆ A(op′) (A.3)

R2 =̂ �P(p′) < �P(p) ∧ A(op′) = {rd}∧
A(op′) ⊆ A(op) (A.4)

L3 =̂ �P(p) > �P(p′) ∧ A(op) = {ap}∧
A(op) ⊆ A(op′) (A.5)

R3 =̂ �P(p′) > �P(p) ∧ A(op′) = {ap}∧
A(op′) ⊆ A(op) (A.6)

In the following proof the antisymmetry of the set inclusion
relation (⊆) is used without explicit mention.

1 p � p′ ∧ p′ � p

2 p � p′ 1, ∧-E

3 (�P(p) = �P(p′) ∧ A(op) ⊆ A(op′))∨ 2, D4.2

(�P(p) < �P(p′) ∧ A(op) = {rd}∧
A(op) ⊆ A(op′))∨
(�P(p) > �P(p′) ∧ A(op) = {ap}∧
A(op) ⊆ A(op′))

4 p′ � p 1, ∧-E

5 (�P(p′) = �P(p) ∧ A(op′) ⊆ A(op))∨ 4, D4.2

(�P(p′) < �P(p) ∧ A(op′) = {rd}∧
A(op′) ⊆ A(op))∨
(�P(p′) > �P(p) ∧ A(op′) = {ap}∧
A(op′) ⊆ A(op))

6 (L1 ∨ L2 ∨ L3) ∧ (R1 ∨ R2 ∨ R3) 3, 5, ∧-I

7 (L1 ∧ (R1 ∨ R2 ∨ R3))∨ 6, ∧-A

(L2 ∧ (R1 ∨ R2 ∨ R3))∨
(L3 ∧ (R1 ∨ R2 ∨ R3))

8 L1 ∧ (R1 ∨ R2 ∨ R3)

9 (L1 ∧ R1) ∨ (L1 ∧ R2) ∨ (L1 ∧ R3) 8, ∧-A

10 L1 ∧ R1

11 �P(p) = �P(p′) ∧ A(op) ⊆ A(op′)∧ (A.1),

�P(p′) = �P(p) ∧ A(op′) ⊆ A(op) (A.2)

12 �P(p′) = �P(p) ∧ A(op′) = A(op) 11

13 L1 ∧ R2

14 �P(p) = �P(p′) ∧ A(op) ⊆ A(op′)∧ (A.1),

�P(p′) < �P(p) ∧ A(op′) = {rd}∧ (A.4)

A(op′) ⊆ A(op)

15 false 14

16 L1 ∧ R3

17 �P(p) = �P(p′) ∧ A(op) ⊆ A(op′)∧ (A.1),

�P(p′) > �P(p) ∧ A(op′) = {ap}∧ (A.6)

A(op′) ⊆ A(op)

18 false 17

19 �P(p′) = �P(p) ∧ A(op′) = A(op) 9,

10–18,

∨-E

20 L2 ∧ (R1 ∨ R2 ∨ R3)

21 (L2 ∧ R1) ∨ (L2 ∧ R2) ∨ (L2 ∧ R3) 20, ∧-A

22 L2 ∧ R1

23 �P(p) < �P(p′) ∧ A(op) = {rd}∧ (A.3),

A(op) ⊆ A(op′) ∧ �P(p′) = �P(p)∧ (A.2)

A(op′) ⊆ A(op)

24 false 23

25 L2 ∧ R2

26 �P(p) < �P(p′) ∧ A(op) = {rd}∧ (A.3),

A(op) ⊆ A(op′) ∧ �P(p′) < �P(p)∧ (A.4)

A(op′) = {rd} ∧ A(op′) ⊆ A(op)

27 false 26

28 L2 ∧ R3

29 �P(p) < �P(p′) ∧ A(op) = {rd}∧ (A.3),

A(op) ⊆ A(op′) ∧ �P(p′) > �P(p)∧ (A.6)

A(op′) = {ap} ∧ A(op′) ⊆ A(op)

30 A(op) = {rd} ∧ A(op) ⊆ A(op′)∧ 29, ∧-E

A(op′) = {ap} ∧ A(op′) ⊆ A(op)

31 A(op) = {rd} ∧ A(op′) = {ap}∧ 30

A(op) = A(op′)

32 false 31
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33 false 21,

22–32,

∨-E

34 L3 ∧ (R1 ∨ R2 ∨ R3)

35 (L3 ∧ R1) ∨ (L3 ∧ R2) ∨ (L3 ∧ R3) 34, ∧-A

36 L3 ∧ R1

37 �P(p) > �P(p′) ∧ A(op) = {ap}∧ (A.5),

A(op) ⊆ A(op′) ∧ �P(p′) = �P(p)∧ (A.2)

A(op′) ⊆ A(op)

38 false 37

39 L3 ∧ R2

40 �P(p) > �P(p′) ∧ A(op) = {ap}∧ (A.5),

A(op) ⊆ A(op′) ∧ �P(p′) < �P(p)∧ (A.4)

A(op′) = {rd} ∧ A(op′) ⊆ A(op)

41 A(op) = {ap} ∧ A(op) ⊆ A(op′)∧ 40,

A(op′) = {rd} ∧ A(op′) ⊆ A(op) ∧-E

42 A(op) = {ap} ∧ A(op′) = {rd}∧ 41

A(op) = A(op′)

43 false 42

44 L3 ∧ R3

45 �P(p) > �P(p′) ∧ A(op) = {ap}∧ (A.1),

A(op) ⊆ A(op′) ∧ �P(p′) > �P(p)∧ (A.6)

A(op′) = {ap} ∧ A(op′) ⊆ A(op)

46 false 42

47 false 35,

36–46,

∨-E

48 �P(p′) = �P(p) ∧ A(op′) = A(op) 7,

8–47,

∨-E

49 p ≈ p′ 48, D4.3

50 p � p′ ∧ p′ � p ⇒ p ≈ p′ 1, 49, ⇒-I

Transitivity

Suppose arbitrary p, p′, p′′ ∈ P and let p = (o, op), p′ =
(o′, op′), p′′ = (o′′, op′′) for some o, o′, o′′ ∈ O, op, op′, op′′ ∈
Op. In the following proof, the transitivity of the relations =,

⊆, and > is used without explicit mention.

1 p � p′ ∧ p′ � p′′

2 p � p′ 1, ∧-E

3 (�P(p) = �P(p′) ∧ A(op) ⊆ A(op′))∨ 2, D4.2

(�P(p) < �P(p′) ∧ A(op) = {rd}∧
A(op) ⊆ A(op′))∨
(�P(p) > �P(p′) ∧ A(op) = {ap}∧
A(op) ⊆ A(op′))

4 p′ � p′′ 1, ∧-E

5 (�P(p′) = �P(p′′) ∧ A(op′) ⊆ A(op′′))∨ 4, D4.2

(�P(p′) < �P(p′′) ∧ A(op′) = {rd}∧
A(op′) ⊆ A(op′′))∨
(�P(p′) > �P(p′′) ∧ A(op′) = {ap}∧
A(op′) ⊆ A(op′′))

Let now

R′
1=̂�P(p′) = �P(p′′) ∧ A(op′) ⊆ A(op′′) (A.7)

R′
2=̂�P(p′) < �P(p′′) ∧ A(op′) = {rd}∧

A(op′) ⊆ A(op′′) (A.8)

R′
3=̂�P(p′) > �P(p′′) ∧ A(op′) = {ap}∧

A(op′) ⊆ A(op′′) (A.9)

Continuing the proof:

6 (L1 ∨ L2 ∨ L3) ∧ (R′
1 ∨ R′

2 ∨ R′
3) 3, 5,

∧-I

7 (L1 ∧ (R′
1 ∨ R′

2 ∨ R′
3))∨ 6, ∧-A

(L2 ∧ (R′
1 ∨ R′

2 ∨ R′
3))∨

(L3 ∧ (R′
1 ∨ R′

2 ∨ R′
3))

8 L1 ∧ (R′
1 ∨ R′

2 ∨ R′
3)

9 (L1 ∧ R′
1) ∨ (L1 ∧ R′

2) ∨ (L1 ∧ R′
3) 8, ∧-A

10 L1 ∧ R′
1

11 �P(p) = �P(p′) ∧ A(op) ⊆ A(op′)∧ (A.1),

�P(p′) = �P(p′′) ∧ A(op′) ⊆ A(op′′) (A.7)

12 �P(p) = �P(p′′) ∧ A(op) ⊆ A(op′′) 11, ∧-E

13 L1 ∧ R′
2
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14 �P(p) = �P(p′) ∧ A(op) ⊆ A(op′)∧ (A.1),

�P(p′) < �P(p′′) ∧ A(op′) = {rd}∧ (A.8)

A(op′) ⊆ A(op′′)

15 �P(p) < �P(p′′) ∧ A(op) = {rd}∧ 14, ∧-E

A(op) ⊆ A(op′′)

16 L1 ∧ R′
3

17 �P(p) = �P(p′) ∧ A(op) ⊆ A(op′)∧ (A.1),

�P(p′) > �P(p′′) ∧ A(op′) = {ap}∧ (A.9)

A(op′) ⊆ A(op′′)

18 �P(p) > �P(p′′) ∧ A(op) = {ap}∧ 17, ∧-E

A(op) ⊆ A(op′′)

19 (�P(p) = �P(p′′) ∧ A(op) ⊆ A(op′′))∨ 9,

(�P(p) < �P(p′′) ∧ A(op) = {rd}∧ 10–15,

A(op) ⊆ A(op′′))∨
(�P(p) > �P(p′′) ∧ A(op) = {ap}∧ 18, ∨-I

A(op) ⊆ A(op′′))

20 p � p′′ 19, D4.2

21 L2 ∧ (R′
1 ∨ R′

2 ∨ R′
3)

22 (L2 ∧ R′
1) ∨ (L2 ∧ R′

2) ∨ (L2 ∧ R′
3) 21, ∧-A

23 L2 ∧ R′
1

24 �P(p) < �P(p′) ∧ A(op) = {rd}∧ (A.3),

A(op) ⊆ A(op′) ∧ �P(p′) = �P(p′′)∧ (A.7)

A(op′) ⊆ A(op′′)

25 �P(p) < �P(p′′) ∧ A(op) = {rd}∧ 24, ∧-E

A(op) ⊆ A(op′′)

26 L2 ∧ R′
2

27 �P(p) < �P(p′) ∧ A(op) = {rd}∧ (A.3),

A(op) ⊆ A(op′) ∧ �P(p′) < �P(p′′)∧ (A.8)

A(op′) = {rd} ∧ A(op′) ⊆ A(op′′)

28 �P(p) < �P(p′′) ∧ A(op) = {rd}∧ 27, ∧-E

A(op) ⊆ A(op′′)

29 L2 ∧ R′
3

30 �P(p) < �P(p′) ∧ A(op) = {rd}∧ (A.3),

A(op) ⊆ A(op′) ∧ �P(p′) > �P(p′′)∧ (A.9)

A(op′) = {ap} ∧ A(op′) ⊆ A(op′′)

31 A(op) = {rd} ∧ A(op) ⊆ A(op′)∧ 30, ∧-E

A(op′) = {ap}
32 false 31

33 (�P(p) < �P(p′′) ∧ A(op) = {rd}∧ 22.

A(op) ⊆ A(op′′))∨ 23–28,

(�P(p) < �P(p′′) ∧ A(op) = {rd}∧ ∨-I

A(op) ⊆ A(op′′))∨
false

34 �P(p) < �P(p′′) ∧ A(op) = {rd}∧ 33, ∨-E

A(op) ⊆ A(op′′)

35 L3 ∧ (R′
1 ∨ R′

2 ∨ R′
3)

36 (L3 ∧ R′
1) ∨ (L3 ∧ R′

2) ∨ (L3 ∧ R′
3) 35, ∧-A

37 L3 ∧ R′
1

38 �P(p) > �P(p′) ∧ A(op) = {ap}∧ (A.5),

A(op) ⊆ A(op′) ∧ �P(p′) = �P(p′′)∧ (A.7)

A(op′) ⊆ A(op′′)

39 �P(p) > �P(p′′) ∧ A(op) = {ap}∧ 38, ∧-E

A(op) ⊆ A(op′′)

40 L3 ∧ R′
2

41 �P(p) > �P(p′) ∧ A(op) = {ap}∧ (A.5),

A(op) ⊆ A(op′) ∧ �P(p′) < �P(p′′)∧ (A.8)

A(op′) = {rd} ∧ A(op′) ⊆ A(op′′)

42 A(op) = {ap} ∧ A(op) ⊆ A(op′)∧ 41, ∧-E

A(op′) = {rd}
43 false 42

44 L3 ∧ R′
3

45 �P(p) > �P(p′) ∧ A(op) = {ap}∧ (A.5),

A(op) ⊆ A(op′) ∧ �P(p′) > �P(p′′)∧ (A.9)

A(op′) = {ap} ∧ A(op′) ⊆ A(op′′)

46 �P(p) > �P(p′′) ∧ A(op) = {ap}∧ 45, ∧-E

A(op) ⊆ A(op′′)

47 (�P(p) > �P(p′′) ∧ A(op) = {ap}∧ 36,

A(op) ⊆ A(op′′))∨ 37–46

false∨
(�P(p) > �P(p′′) ∧ A(op) = {ap}∧ ∨-I

A(op) ⊆ A(op′′))

48 �P(p) > �P(p′′) ∧ A(op) = {ap}∧ 46, ∨-E
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A(op) ⊆ A(op′′)

49 p � p′′∨ 7,

(�P(p) < �P(p′′) ∧ A(op) = {rd}∧ 8–48,

A(op) ⊆ A(op′′))∨ ∨-I

(�P(p) > �P(p′′) ∧ A(op) = {ap}∧
A(op) ⊆ A(op′′))

50 p � p′′ 49, ∨-E,

D4.2

51 p � p′ ∧ p′ � p′′ ⇒ p � p′′ 1, 50,

⇒-I

Note that the latter two disjuncts of line 49 are subsumed
within the first disjunct of the same line.

A.2. Proof of Corollary 5.1

Suppose that PA(r) contains more than two elements. Then
there are inevitably two or more permissions in PA(r) all of
which grant (at least) a read access, or grant (at least) an
append access, and thus at least two permissions are mutually
comparable (recall that we are assuming that all permissions
pertain to a single compartment in the BLP sense). Assignment
of any such pair of mutually comparable permissions to a role
explicitly violates condition (27).

Suppose now that p, p′ are distinct permissions. If #A(op) >

1, then A(op) = {rd, ap} and hence p is necessarily comparable
with p′ (recall again that we are assuming that all permissions
pertain to a single compartment). It follows from (27) that p and
p′ cannot be both explicitly assigned to r. An analogous argu-
ment holds for the case in which #A(op′) > 1. Next, suppose
that A(op) = A(op′). Then p and p′ are by definition compara-
ble and, by virtue of (27), cannot be both assigned to r.

A.3. Role seniority—alternative formulation

Theorem A.1. The role seniority relation defined through
predicate (30) is a partial order.

Proof. Reflexivity
Suppose arbitrary r ∈ R and let p ∈ PASoD(r). The proof is
trivial:

1 p � p T4.1

2 ∀p ∈ PA(r) • ∃p ∈ PA(r) • p � p 1

3 IP(PA(r)) (14), (27)

4 IP(PA(r))∧ 2, 3, ∧-I

∀p ∈ PA(r) • ∃p ∈ PA(r) • p � p

5 PA(r) � PA(r) 4, (15)

6 r � r 5, D5.2

7 r � r 1, 6

Antisymmetry
Suppose arbitrary r1, r2 ∈ R. We assume here that if two roles
entail permissions of equal seniority, i.e. if PA(r1) ≈ PA(r2),
then the roles are of equal seniority too (denoted r1 ≈ r2).

1 r1 � r2 ∧ r2 � r1

2 r1 � r2 1, ∧-E

3 PA(r1) � PA(r2) 2, D5.2

4 ∀p1 ∈ PA(r1) • ∃p2 ∈ PA(r2) • 3, (15), ∧-E

p1 � p2

5 p1 ∈ PA(r1) arbitrary p1

6 p1 ∈ PA(r1) ⇒ 4, ∀-E

∃p2 ∈ PA(r2) • p1 � p2

7 ∃p2 ∈ PA(r2) • p1 � p2 5, 6, ⇒-E

8 p2 ∈ PA(r2) ∧ p1 � p2 7, ∃-E

9 p2 ∈ PA(r2) 8, ∧-E

10 r2 � r1 1, ∧-E

11 PA(r2) � PA(r1) 10, D5.2

12 ∀p2 ∈ PA(r2) • 11, (15), ∧-E

∃p1 ∈ PA(r1) • p2 � p1

13 p2 ∈ PA(r2) ⇒ 12, ∀-E

∃p1 ∈ PA(r1) • p2 � p1

14 ∃p1 ∈ PA(r1) • p2 � p1 9, 13, ⇒-E

15 p1 ∈ PA(r1) ∧ p2 � p1 14, ∃-E

16 p1 ∈ PA(r1) 15, ∧-E

17 ¬(p1 � p1) ∨ p1 = p1 15, 16, (27)

18 p1 � p2 8, ∧-E

19 p2 � p1 15, ∧-E

20 p1 � p1 18, 19, T4.1

21 p1 = p1 17, 20, ∨-E

22 p1 ≈ p2 18, 19, 21,

T4.1

23 ∃p2 ∈ PASoD(r2) • p1 ≈ p2 22, ∃-I
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24 p1 ∈ PA(r1) ⇒ ∃p2 ∈ PA(r2) • 5, 23, ⇒-I

p1 ≈ p2

25 ∀p1 ∈ PA(r1) • ∃p2 ∈ PA(r2) • 5, 24, ∀-I

p1 ≈ p2

An entirely symmetrical line of reasoning as the one provided
through lines 2–25 yields:

26 ∀p2 ∈ PA(r2) • 1

∃p1 ∈ PA(r1) • p2 ≈ p1

27 (∀p1 ∈ PA(r1) • ∃p2 ∈ PA(r2) • 25, 26, ∧-I

p1 ≈ p2)∧
(∀p2 ∈ PA(r2) • ∃p1 ∈ PA(r1) •

p2 ≈ p1)

28 PA(r1) ≈ PA(r2) 27, (16)

29 r1 ≈ r2 28

30 r1 � r2 ∧ r2 � r1 ⇒ r1 ≈ r2 1, 29, ⇒-I

Transitivity
Suppose arbitrary r1, r2, r3 ∈ R.

1 r1 � r2 ∧ r2 � r3

2 r1 � r2 1, ∧-E

3 PA(r1) � PA(r2) 2, D5.2

4 ∀p1 ∈ PA(r1) • ∃p2 ∈ PA(r2) • 3, (15), ∧-E

p1 � p2

5 p1 ∈ PA(r1) ⇒ ∃p2 ∈ PA(r2) • 4, ∀-E

p1 � p2

6 p1 ∈ PA(r1) arbitrary p1

7 ∃p2 ∈ PA(r2) • p1 � p2 5, 6, ⇒-E

8 p2 ∈ PA(r2) ∧ p1 � p2 7, ∃-E

9 p2 ∈ PA(r2) 8, ∧-E

10 r2 � r3 1, ∧-E

11 PA(r2) � PA(r3) 10, D5.2

12 ∀p2 ∈ PA(r2) • ∃p3 ∈ PA(r3) • 11, (15), ∧-E

p2 � p3

13 p2 ∈ PA(r2) ⇒ ∃p3 ∈ PA(r3) • 12, ∀-E

p2 � p3

14 ∃p3 ∈ PA(r3) • p2 � p3 9, 13, ⇒-E

15 p3 ∈ PA(r3) ∧ p2 � p3 14, ∃-E

16 p1 � p2 8, ∧-E

17 p2 � p3 15, ∧-E

18 p1 � p3 16, 17, T4.1

19 ∃p3 ∈ PA(r3) • p1 � p3 18, ∃-I

20 p1 ∈ PA(r1) ⇒ ∃p3 ∈ PA(r3) • 6, 19, ⇒-I

p1 � p3

21 ∀p1 ∈ PA(r1) • ∃p3 ∈ PA(r3) • 6, 20, ∀-I

p1 � p3

22 IP(PA(r1)) ∧ IP(PA(r3)) (14), (27)

23 IP(PA(r1)) ∧ IP(PA(r3))∧ 21, 22, ∧-I

∀p1 ∈ PA(r1) • ∃p3 ∈ PA(r3) •

p1 � p3

24 PA(r1) � PA(r3) 23, (15)

25 r1 � r3 24, D5.2

26 r1 � r2 ∧ r2 � r3 ⇒ r1 � r3 1, 25, ⇒-I

A.4. Proof of Corollary 5.4

Irreflexivity

Suppose arbitrary r ∈ R. We shall proceed with a proof by con-
tradiction.

1 r ∈ RConf (r)

2 ∃p, p′ ∈ PA�
SoD(r) • p′ ∈ PConf (p) 1, D5.8

3 p, p′ ∈ PA�
SoD(r) ∧ p′ ∈ PConf (p) 2, ∃-E

4 PA�
SoD(r) ∩ PConf (p) �= ∅ 3

5 p ∈ PA�
SoD(r) 3, ∧-E

6 PA�
SoD(r) ∩ PConf (p) = ∅ 5, D5.5,

D5.7

7 false 4, 6

8 r �∈ RConf (r) 1, 7

Symmetry

Suppose arbitrary r, r′ ∈ R.

1 r ∈ RConf (r′)

2 ∃p ∈ PA�
SoD(r); p′ ∈ PA�

SoD(r′) • 1, D5.8
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p′ ∈ PConf (p)

3 p ∈ PA�
SoD(r) ∧ p′ ∈ PA�

SoD(r′)∧ 2, ∃-E

p′ ∈ PConf (p)

4 p′ ∈ PConf (p) 3, ∧-E

5 p ∈ PConf (p′) 4, (39)

6 p ∈ PA�
SoD(r) 3, ∧-E

7 p′ ∈ PA�
SoD(r′) 3, ∧-E

8 ∃p ∈ PA�
SoD(r); p′ ∈ PA�

SoD(r′) • 5, 6, 7, ∃-I

p ∈ PConf (p′)

9 r′ ∈ RConf (r) 8, D5.8

10 r ∈ RConf (r′) ⇒ r′ ∈ RConf (r) 1, 9, ⇒-I

A.5. Proof of Theorem 7.1

Suppose arbitrary u ∈ U ; o, o′ ∈ O; v, v′ ∈ PA \ ∅; op,
op′ ∈ Op.

1 (u, o, v) ∈ B ∧ rd ∈ v

2 (u, o, v) ∈ B 1, ∧-E

3 ∃s ∈ Session; r ∈ R; op ∈ Op • 2, (97)

u = user(s) ∧ r ∈ roles(s) ∧ A(op) = v

∧(r, (o, op)) ∈ PA�
SoD

4 u = user(s) ∧ r ∈ roles(s)∧ 3, ∃-E

A(op) = v ∧ (r, (o, op)) ∈ PA�
SoD

5 u = user(s) 4, ∧-E

6 roles(s) ⊆ UASoD(u) 5, (89)

7 r ∈ roles(s) 6, ∧-E

8 �R(r) = fC(u) 7, (91)

9 (r, (o, op)) ∈ PA�
SoD 4, ∧-E

10 (o, op) ∈ PA�
SoD(r) 9

11 PA�
Excl(r) ⊆ PA�(r) D5.4

12 PA�
SoD(r) ⊆ PA�

Excl(r) D5.5,

D5.7

13 PA�
SoD(r) ⊆ PA�(r) 11, 12

14 (o, op) ∈ PA�(r) 9, 13

15 (o, op) ∈ PA(r)∨ 14, (32),

∃p′ ∈ PA(r) • (o, op) � p′ ∀-E

16 (o, op) ∈ PA(r)

17 �R(r) = �P((o, op)) 16, (26)

18 �P((o, op)) ≤ �R(r) 17, ∨-I

19 ∃p′ ∈ PA(r) • (o, op) � p′

20 p′ ∈ PA(r) ∧ (o, op) � p′ 19, ∃-E

21 (o, op) � p′ 20, ∧-E

22 p′ ∈ PA(r) 20, ∧-E

23 �R(r) = �P(p′) 22, (26)

24 rd ∈ v 1, ∧-E

25 v = {rd} ∨ v = {rd, ap} 24

26 A(op) = v 4, ∧-E

27 A(op) = {rd} ∨ A(op) = {rd, ap} 25, 26

28 A(op) = {rd} 21, D4.2

29 (�P((o, op)) = �P(p′)∧
A(op) ⊆ A(op′))∨
(�P((o, op)) < �P(p′)∧
A(op) = {rd} ∧ A(op) ⊆ A(op′))∨
(�P((o, op)) > �P(p′)∧
A(op) = {ap} ∧ A(op) ⊆ A(op′))

30 �P((o, op)) = �P(p′)∧
A(op) ⊆ A(op′)

31 �P((o, op)) = �P(p′) 30, ∧-E

32 �P((o, op)) < �P(p′)∧
A(op) = {rd} ∧ A(op) ⊆ A(op′)

33 �P((o, op)) < �P(p′) 32, ∧-E

34 �P((o, op)) > �P(p′)∧
A(op) = {ap} ∧ A(op) ⊆ A(op′)

35 A(op) = {ap} 34, ∧-E

36 false 28, 35

37 �P((o, op)) = �P(p′)∨ 29,

�P((o, op)) < �P(p′) 30–36,

∨-E

38 �P((o, op)) ≤ �P(p′) 37

Let us assume that p′ = (o′, op′) for some o′ ∈ O and op′ ∈ Op.
Continuing the proof:

39 A(op) = {rd, ap}
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40 (�P((o, op)) = �P(p′)∧ 21, D4.2

A(op) ⊆ A(op′))∨
(�P((o, op)) < �P(p′)∧
A(op) = {rd} ∧ A(op) ⊆ A(op′))∨
(�P((o, op)) > �P(p′)∧
A(op) = {ap} ∧ A(op) ⊆ A(op′))

41 �P((o, op)) = �P(p′)∧
A(op) ⊆ A(op′)

42 �P((o, op)) = �P(p′) 41, ∧-E

43 �P((o, op)) < �P(p′)∧
A(op) = {rd} ∧ A(op) ⊆ A(op′)

44 A(op) = {rd} 43, ∧-E

45 false 39, 44

46 �P((o, op)) > �P(p′)∧
A(op) = {ap} ∧ A(op) ⊆ A(op′)

47 A(op) = {ap} 46, ∧-E

48 false 39, 47

49 �P((o, op)) = �P(p′) 40,

41–48,

∨-E

50 �P((o, op)) = �P(p′)∨ 49, ∨-I

�P((o, op)) < �P(p′)

51 �P((o, op)) ≤ �P(p′) 50

52 �P((o, op)) ≤ �P(p′) 27,

28–51,

∨-E

53 �P((o, op)) ≤ �R(r) 23, 52

54 �P((o, op)) ≤ �R(r) 15,

16–53,

∨-E

55 �P((o, op)) = fO(o) D4.1

56 fO(o) ≤ �R(r) 54, 55

57 fO(o) ≤ fC(u) 8, 56

58 fO(o) ≤ fS(u) 57, (2)

59 (u, o, v) ∈ B ∧ rd ∈ v ⇒ fO(o) ≤ fS(u) 1, 58,

⇒-I

A.6. Proof of Theorem 7.2

Proof of Predicate (98)
Suppose arbitrary u ∈ U ; o ∈ O; v ∈ PA \ ∅.

1 (u, o, v) ∈ B ∧ ap ∈ v

2 (u, o, v) ∈ B 1, ∧-E

3 ∃s ∈ Session; r ∈ R; op ∈ Op • 2, (97)

u = user(s) ∧ r ∈ roles(s)∧
(r, (o, op)) ∈ PA�

SoD∧
A(op) = v

4 u = user(s) ∧ r ∈ roles(s) 3, ∃-E

∧(r, (o, op)) ∈ PA�
SoD∧

A(op) = v

5 u = user(s) 4, ∧-E

6 roles(s) ⊆ UASoD(u) 5, (89)

7 r ∈ roles(s) 4, ∧-E

8 �R(r) = fC(u) 7, (91)

9 (r, (o, op)) ∈ PA�
SoD 4, ∧-E

10 (o, op) ∈ PA�
SoD(r) 9

11 PA�
Excl(r) ⊆ PA�(r) D5.4

12 PA�
SoD(r) ⊆ PA�

Excl(r) D5.5,

D5.7

13 PA�
SoD(r) ⊆ PA�(r) 11, 12

14 (o, op) ∈ PA�(r) 9, 13

15 (o, op) ∈ PA(r)∨ 14, (32),

∃p′ ∈ PA(r) • (o, op) � p′ ∀-E

16 (o, op) ∈ PA(r)

17 �R(r) = �P((o, op)) 16, (26)

18 �P((o, op)) ≥ �R(r) 17, ∨-I

19 ∃p′ ∈ PA(r) • (o, op) � p′

20 p′ ∈ PA(r) ∧ (o, op) � p′ 19, ∃-E

21 (o, op) � p′ 20, ∧-E

22 p′ ∈ PA(r) 20, ∧-E

23 �R(r) = �P(p′) 22, (26)

24 ap ∈ v 1, ∧-E

25 v = {ap} ∨ v = {rd, ap} 24
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26 A(op) = v 4, ∧-E

27 A(op) = {ap} ∨ A(op) = {rd, ap} 25, 26

Let p′ = (o′, op′) for some o′ ∈ O and op′ ∈ Op. Continuing the
proof:

28 A(op) = {ap}
29 (�P((o, op)) = �P(p′)∧ 21, D4.2

A(op) ⊆ A(op′))∨
(�P((o, op)) < �P(p′)∧
A(op) = {rd} ∧ A(op) ⊆ A(op′))∨
(�P((o, op)) > �P(p′)∧
A(op) = {ap} ∧ A(op) ⊆ A(op′))

30 �P((o, op)) = �P(p′)∧
A(op) ⊆ A(op′)

31 �P((o, op)) = �P(p′) 30, ∧-E

32 �P((o, op)) < �P(p′)∧
A(op) = {rd} ∧ A(op) ⊆ A(op′)

33 A(op) = {rd} 32, ∧-E

34 false 28, 33

35 �P((o, op)) > �P(p′)∧
A(op) = {ap} ∧ A(op) ⊆ A(op′)

36 �P((o, op)) > �P(p′) 35, ∧-E

37 �P((o, op)) = �P(p′)∨ 30–36,

�P((o, op)) > �P(p′) ∨-E

38 �P((o, op)) ≥ �P(p′) 37

39 A(op) = {rd, ap}
40 (�P((o, op)) = �P(p′)∧ 21, D4.2

A(op) ⊆ A(op′))∨
(�P((o, op)) < �P(p′)∧
A(op) = {rd} ∧ A(op) ⊆ A(op′))∨
(�P((o, op)) > �P(p′)∧
A(op) = {ap} ∧ A(op) ⊆ A(op′))

41 �P((o, op)) = �P(p′)∧
A(op) ⊆ A(op′)

42 �P((o, op)) = �P(p′) 41, ∧-E

43 �P((o, op)) < �P(p′)∧
A(op) = {rd} ∧ A(op) ⊆ A(op′)

44 A(op) = {rd} 43, ∧-E

45 false 39, 44

46 �P((o, op)) > �P(p′)∧
A(op) = {ap} ∧ A(op) ⊆ A(op′)

47 A(op) = {ap} 46, ∧-E

48 false 39, 47

49 �P((o, op)) = �P(p′) 40–48,

∨-E

50 �P((o, op)) = �P(p′)∨ 49, ∨-I

�P((o, op)) > �P(p′)

51 �P((o, op)) ≥ �P(p′) 50

52 �P((o, op)) ≥ �P(p′) 27–51,

∨-E

53 �P((o, op)) ≥ �R(r) 23, 52

54 �P((o, op)) ≥ �R(r) 16–53,

∨-E

55 �P((o, op)) = fO(o) D4.1

56 fO(o) ≥ �R(r) 54, 55

57 fO(o) ≥ fC(u) 8, 56

58 fO(o) ≥ fS(u) 57, (2)

59 (u, o, v) ∈ B ∧ ap ∈ v ⇒ fO(o) ≥ fS(u) 1, 58, ⇒-I

A.6.1. Proof of predicate (99)
Suppose arbitrary u ∈ U ; o, o′ ∈ O; v, v′ ∈ PA \ ∅.

1 (u, o, v) ∈ B ∧ ap ∈ v∧
(u, o′, v′) ∈ B ∧ rd ∈ v′

2 (u, o, v) ∈ B ∧ ap ∈ v 1, ∧-E

3 (u, o, v) ∈ B 2, ∧-E

4 ∃s ∈ Session; r ∈ R; op ∈ Op • 3, (97)

u = user(s) ∧ r ∈ roles(s)∧
(r, (o, op)) ∈ PA�

SoD ∧ A(op) = v

5 u = user(s) ∧ r ∈ roles(s)∧ 4, ∃-E

(r, (o, op)) ∈ PA�
SoD ∧ A(op) = v
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A reasoning identical to that provided through lines 5-54 of the
proof of predicate (98) yields:

6 �P((o, op)) ≥ �R(r) 5

7 (u, o′, v′) ∈ B ∧ A(op′) = {rd} 1, ∧-E

8 (u, o′, v′) ∈ B 7, ∧-E

9 ∃s ∈ Session; r ∈ R; op ∈ Op • 8, (97)

u = user(s) ∧ r ∈ roles(s)∧
(r, (o′, op)) ∈ PA�

SoD ∧ A(op) = v

10 u = user(s) ∧ r ∈ roles(s)∧ 9, ∃-E

(r, (o′, op)) ∈ PA�
SoD ∧ A(op) = v

A reasoning identical to that provided through lines 5–54 of the
proof of Theorem 7.1 yields:

11 �P((o′, op)) ≤ �R(r) 10

12 u = user(s) 5, ∧-E

13 r ∈ roles(s) 5, ∧-E

14 �R(r) = fC(u) 12, 13,

(91)

15 u = user(s) 10, ∧-E

16 r ∈ roles(s) 10, ∧-E

17 �R(r) = fC(u) 15, 16,

(91)

18 �R(r) = �R(r) 14, 17

19 �P((o′, op)) ≤ �P((o, op)) 6, 11, 18

20 fO(o′) ≤ fO(o) 19, (10)

21 ((u, o, v) ∈ B ∧ ap ∈ v∧ 1, 20, ⇒-I

(u, o′, v′) ∈ B ∧ rd ∈ v′) ⇒
fO(o′) ≤ fO(o)

A.7. Proof of Theorem 7.3

Suppose arbitrary u ∈ U ; o, o′ ∈ O; v, v′ ∈ PA \ ∅; op, op′ ∈
Op. We shall proceed with a proof by contradiction.

1 (u, o, v) ∈ B ∧ A(op) = v ∧ A(op′) = v′∧
(u, o′, v′) ∈ B ∧ (o′, op′) ∈ PConf ((o, op))

2 (u, o, v) ∈ B 1, ∧-E

3 ∃s ∈ Session; r ∈ R; op ∈ Op • 2, (97)

u = user(s) ∧ r ∈ roles(s) ∧ A(op) = v∧
(r, (o, op)) ∈ PA�

SoD

4 u = user(s) ∧ r ∈ roles(s) ∧ A(op) = v∧ 3, ∃-E

(r, (o, op)) ∈ PA�
SoD

5 A(op) = v 4, ∧-E

6 A(op) = v 1, ∧-E

7 A(op) = A(op) 5, 6

8 (u, o′, v′) ∈ B 1, ∧-E

9 ∃s ∈ Session; r ∈ R; op ∈ Op • 5, (97)

u = user(s) ∧ r ∈ roles(s) ∧ A(op) = v′

∧(r, (o′, op)) ∈ PA�
SoD

10 u = user(s) ∧ r ∈ roles(s)∧ 9, ∃-E

A(op) = v′ ∧ (r, (o′, op)) ∈ PA�
SoD

11 A(op) = v′ 10, ∧-E

12 A(op′) = v′ 1, ∧-E

13 A(op′) = A(op) 11, 12

14 (o′, op′) ∈ PConf ((o, op)) 1, ∧-E

15 (o′, op) ∈ PConf ((o, op)) 14

From line 7, op and op have the same effect on o. Similarly, from
line 13, op and op′ have the same effect on o′. It follows that, if
(o, op) and (o′, op′) are conflicting (line 14), then so are (o, op)

and (o′, op). Continuing the proof:

16 (r, (o, op)) ∈ PA�
SoD 4, ∧-E

17 (o, op) ∈ PA�
SoD(r) 16

18 (r, (o′, op)) ∈ PA�
SoD 10, ∧-E

19 (o′, op) ∈ PA�
SoD(r) 18

20 (o, op) ∈ PA�
SoD(r)∧ 15, 17,

(o′, op) ∈ PA�
SoD(r)∧ 19, ∧-I

(o′, op) ∈ PConf ((o, op))

21 ∃p ∈ PA�
SoD(r); p′ ∈ PA�

SoD(r) • 20, ∃-I

p′ ∈ PConf (p)

22 r ∈ RConf (r) 21, D5.8

23 u = user(s) ∧ r ∈ roles(s) 4, ∧-E

24 u = user(s) ∧ r ∈ roles(s) 10, ∧-E

25 r, r ∈ ⋃
s∈user−1(u) roles(s) 23, 24

26 r �∈ RConf (r) 25, C6.2

27 false 22, 26
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28 ¬((u, o, v) ∈ B ∧ A(op) = v∧ 1, 27

A(op′) = v′ ∧ (u, o′, v′) ∈ B∧
(o′, op′) ∈ PConf ((o, op)))

29 (u, o, v) ∈ B ∧ A(op) = v ∧ A(op′) = v′ 28

∧(u, o′, v′) ∈ B ⇒
(o′, op′) �∈ PConf ((o, op))
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