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Abstract: The constantly increasing number of cyberattacks worldwide raise significant security concerns that generally 

deter small, medium and large enterprises from adopting the cloud paradigm and benefitting from the numerous 

advantages that it offers. One way to alleviate these concerns is to devise suitable policies that infuse adequate 

access controls into cloud services. However, the dynamicity inherent in cloud environments, coupled with the 

heterogeneous nature of cloud services, hinders the formulation of effective and interoperable access control 

policies that are suitable for the underlying domain of application. To this end, this work proposes an approach to 

the semantic representation of access control policies and, in particular, to the semantic representation of the 

context expressions incorporated in such policies. More specifically, the proposed approach enables stakeholders 

to accurately define the structure of their policies, in terms of relevant knowledge artefacts, and thus infuse into 

these policies their particular security and business requirements. This clearly leads to more effective policies, 

whilst it enables semantic reasoning about the abidance of policies by the prescribed structure. In order to alleviate 

the scalability concerns associated with semantic reasoning, the proposed approach introduces a reference 

implementation that extends XACML 3.0 with an expert system fused with reasoning capabilities through the 

incorporation of suitable meta-rules.  

Keywords: Context-aware security, Ontologies, Access Control Policies, Data privacy, Security-by-design, Semantic 

reasoning. 

 

1 INTRODUCTION  

Enterprises increasingly embrace the cloud computing paradigm in order to gain access to a wide range of 

infrastructure, platform, and application resources that are abstracted as services and delivered remotely, over the 

Internet, by diverse providers. The main force that fuels this trend is the significant cost savings that these services 

instigate, as well as the acceleration in the development and deployment of new applications that boosts 

innovation and productivity.  

However, due to security concerns, many enterprises are reluctant to migrate their critical operations and 

sensitive data to the cloud [1]. A promising approach to alleviating these security concerns is to assist application 

developers in infusing adequate access control policies in cloud applications for safeguarding their data against 

unauthorised accesses [2]. In this respect, we envisage a generic security-by-design framework, essentially a 

PaaS offering, which facilitates developers in devising, and ultimately implementing, such policies. Nevertheless, 

in order for the policies to be effective, they must take into account the dynamically-evolving nature of cloud 

environments. In particular, they must take into account the contextual information that needs to be associated 

with an access request in order for it to be permitted or denied.  

To this end, the work reported in [2] outlined the construction of an ontological model for access control 

policies, one that bears the following characteristics: it is underlain by a suitable Context-Aware Security Model 

– an extensible framework of interrelated concepts that capture a wide range of relevant contextual attributes, 

thus embracing the attribute-based access control (ABAC) scheme [3]; it uses a generic and extensible formalism 

that is able to capture the knowledge that lurks behind access control policies and thus unravel the definition of a 

policy from the code employed for enforcing it. These characteristics bring about the following seminal 

advantages: (i) they allow the policy-related knowledge to be extended and instantiated to suit the needs of any 



 

particular cloud application, independently of the code employed by that application; (ii) they allow new 

knowledge artefacts to be inferred from existing ones thus enabling the enforcement of access control policies in 

situations in which the knowledge artefacts encoded in a policy do not necessarily match, at the syntactic level, 

the corresponding artefacts encoded in access requests. As an example, consider a policy whereby a particular 

subject (say s) is allowed to read a particular sensitive data object only when s issues the request from within the 

geographical area identified as South Europe. Suppose now that an access request is reported to be issued from 

within the city of Athens. Although the contextual information incorporated in the policy differs syntactically 

from the contextual information reported in the request, semantic inferencing allows us to conclude1 that Athens 

is indeed located in Greece and thus s satisfies the contextual condition set by the policy; this clearly absolves 

application developers from having to specify fine-grained access control policies – i.e. policies that cover every 

permissible location of access. 

Nevertheless, the ontological model devised in [2] suffers a number of limitations. Firstly, it assumes that the 

contextual attributes articulated in an access control policy are invariably associated with the subject of a request, 

ignoring the fact that contextual attributes may need to be associated with other entities such as the object of a 

request, the request itself, or any other entity that is deemed relevant for determining whether the request should 

be granted or denied. As an example, consider a policy whereby a particular subject (say s) is allowed to read a 

sensitive data object (say o) only when: o resides in a data centre in the EU; s issues the request from within a 

particular subnet (say subnet1); the request takes place during a specific time interval; another entity (say s’) 

resides in a particular geographical area – say bldg1. Evidently, in addition to the subject s of a request, this 

policy needs to attach context to the object o of a request (namely, the location of the object), to the request itself 

(namely, the time a request is issued) and to the entity s’ (namely, the location in which s’ resides). 

Secondly, although the ontological model in [2] prescribes a set of knowledge artefacts on which access 

control policies, hence access control decisions, are based –one that invariably comprises the subject and object 

of a request, the kind of access sought (e.g. read or write access), and a body of contextual attributes pertaining 

to the subject of a request– it fails to specify the cardinalities with which these knowledge artefacts may be 

incorporated in a policy, or the allowable manners which they may be combined (e.g. conjunctively, 

disjunctively, etc.). For instance, it fails to specify whether an access control policy may be based on two or more 

subjects or objects, whether it may allow more than one kind of access, or whether it may incorporate one or 

more contextual attributes that are conjunctively –or for that matter disjunctively– combined. This essentially 

precludes the articulation of any constraints regarding the exact structure, or form, that an access control policy 

may assume; in other words, it precludes stakeholders2 from infusing into access control policies their particular 

security and business requirements. For example, a stakeholder may wish to articulate that any access control 

policy that refers to a particular class of sensitive objects must be based on, hence incorporate, contextual 

attributes that provide information about the geographical location of the subject of a request, as well as about 

the time t at which the request is issued; any policy that does abide by this structure is considered not well-

formed and thus invalid. The model in [2] does not support the articulation of such constraints. 

In order to overcome these limitations, this paper extends the work presented in [4] by proposing a 

generalisation to the ontological model outlined in [2] that bears the following seminal characteristics. Firstly, it 

is able to attach context to any entity that is deemed relevant to a request at two distinct levels: (i) at the level of 

the access control policy, indicating the contextual conditions that must be satisfied by an entity in order for an 

access request to be permitted (or denied); (ii) at the level of the request itself, indicating the actual context 

attached to an entity at the time of the request. Secondly, it enables stakeholders to harness the knowledge 

artefacts embodied in an access control policy through the articulation of a set of well-formedness constraints 

that prescribe the knowledge artefacts, and their corresponding cardinalities, that may be incorporated in a policy. 

In other words, it empowers stakeholders to accurately define the structure by which their access control policies 

must abide and thus infuse into these policies their particular security and business requirements. Clearly, this 

leads to more effective access control policies. Moreover, a seminal benefit of the proposed generalisation is that 

it enables reasoning –performed automatically by a policy validator–  about the well-formedness of a particular 

access control policy, i.e. about its abidance by the constraints stipulated by the stakeholder. Similarly, the 

                                                           
1 This of course presupposes that the knowledge that Athens is a city in Greece is encoded in the underlying Security Context 

Element – see Section 3 for more details. 
2 By “stakeholders” we henceforth refer to people that responsible for determining the security policy of an organisation – 

e.g. security officers, CTOs, Data Protection Officers (DPOs), etc. 



 

proposed generalisation paves the way for automated reasoning regarding the identification of potential inter-

policy relations, such as contradicting or subsuming polices, that may affect the overall effectiveness of the 

policies. For instance, the policy of the example above subsumes a policy that permits s to read o from within 

subnet1 between 09:00 and 17:00 and when s’ resides in a location within bldg1 (say the location identified 

as room123). 

Last but not least, our generalised approach implements a context-aware access control engine, one that 

infuses semantic inferencing capabilities into a widely-adopted expert system for enabling the efficient generation 

of new knowledge, hence allowing access control policies to be enforced at the semantic, rather than at the 

syntactic, level. 

The rest of this paper is structured as follows. Section 2 presents the ontologically-expressed Context-Aware 

Security Model that underpins our access control policies. Section 3 outlines how the object properties of this 

model can be utilised in order to perform semantic inferencing at the level of access requests. Section 4 presents 

our generalisation to the ontological model in [2] and Section 5 outlines how context-based inferencing can be 

performed in order to identify inter-policy relations. Section 6 presents an ABAC reference implementation that 

enables policy enforcement to be performed and reasoned about at the semantic, rather than at the syntactic, level. 

Section 7 presents related work and, finally, Section 8 presents conclusions. 

2 MODELLING CONTEXT 

In [2], a meta-model for capturing the primary facets of the Context-aware Security Model was presented. An 

updated version of this meta-model is depicted in Figure 1; the main change with respect to [2] is the extraction 

of the classes pcm:Object, pcm:Subject, pcm:Request and pcm:Handler from the class 

pcm:SecurityContextElement3 – a change which, as we shall see in Sections 3, 4 and 5, simplifies semantic 

inferencing at the level of requests, as well as the incorporation of context in access control policies. 

 

 
Figure 1: Context-aware security meta-model (namespace prefixes are omitted in figures to reduce clutter). 

Ontologically, the facets of the Context-aware Security Model are represented in terms of the following 

classes: 

 pcm:Request – Captures the characteristics that should be considered for evaluating an intercepted 

request. 

 pcm:Subject – An instance of this class represents either the entity seeking access to a particular object 

(i.e. the ‘requestor’), or the entity whose state should be considered for allowing a certain requestor to 

access sensitive data. Such an entity can be an organisation, a person, a group or a service. 

                                                           
3 Definitions for all namespace prefixes encountered in this section can be found in [5]. 



 

 pcm:Object – Describes the protected resources – e.g. relational or non-relational database tables, files, 

software artefacts that manage sensitive data, etc. 

 pcm:Handler – This class refers to the characteristics of dedicated software components that are used for 

federating and processing raw data relevant to an access control decision and semantically uplifting them 

as instances of the SecurityContextElement. Handlers are responsible for fusing a context-aware 

policy enforcement mechanism with contextual information in a usable format that will allow for the 

evaluation of access control policies. Different kinds of handlers include, for example, authentication 

handlers, request handlers, (reverse) location geocoding handlers, IP-address-to-city handlers, etc. 

 ppm:Permission – This class refers to the allowed actions that an individual4 of the class pcm:Subject 

is able to perform upon an individual of the class pcm:Object, including data permissions (e.g. Datastore, 

File, Web endpoint, Volume permissions) and data definition language (DDL) permissions (e.g. Datastore, 

File system structure permissions). 

 pcpm:ContextPattern – This class refers to recurring motives of data accesses. Future access requests 

on sensitive data can be permitted, or denied, on the basis of such information which may include, for 

example, the typical date/time interval during which requests take place, or the most frequently-used device 

type for issuing incoming access requests. 

 
Figure 2: Security Context Element overview (arrows indicate subclass relations) 

The pcm:SecurityContextElement class describes the various contextual attributes that may be 

associated with the subjects and/or the objects of a request, as well as with the request itself. As depicted in Figure 

2, it encompasses the following top-level concepts. 

 pcm:Location – Describes a physical or a network location where data are stored or from where a 

particular entity is requesting access to data, as well as the location of an entity that must be taken into 

account in order to permit or deny an access request. Its main subclasses are pcm:PhysicalLocation 

                                                           
4 The terms “individual” and “instance” are used interchangeably. 



 

and pcm:NetworkLocation. A physical location may involve: an address, a geographical position, an 

area, an abstract location and/or a point of interest (POI) defined in terms of geographical coordinates. A 

network location corresponds to an identifier for a node or network telecommunications interface from 

which a particular entity is requesting access to data. 

 pcm:DateTime – Describes the specific chronological point expressed as an instant or interval that 

characterises an access request. Its main sub-classes are: pcm:Instant, pcm:DateTimeInterval 

 pcm:Connectivity – Captures information related to the connection used by an entity for accessing 

sensitive data. Its main subclasses are: pcm:DeviceType, pcm:ConnectionType, 

pcm:ConnectionMetrics and pcm:ConnectionSecurity. The pcm:DeviceType class describes 

the device used for requesting access to sensitive data. The pcm:ConnectionType class refers to the 

different ways of transmitting an access request (e.g. LTE, 3G, WiFi, Cable, Satellite). The class 

pcm:ConnectionMetrics provides quantitative characteristics of the connection type used for 

accessing sensitive data (e.g. the download rate). Finally, the pcm:ConnectionSecurity class provides 

details on the level of security in the established connection for accessing sensitive data (e.g. 

TLS_ECDHE_RSA_WITH_AES_128_GCMSHA256 as a connection cipher suite). 

3 CONTEXT-BASED INFERENCING AT THE LEVEL OF REQUESTS 

The meta-model of Figure 1 provides a suite of object properties that aim at: (i) interrelating a request with its 

subject(s) and object(s); (ii) interrelating the subjects and objects of a request –as well as the request itself– with 

relevant contextual attributes from the class pcm:SecurityContextElement. The former interrelation is 

achieved by associating the class pcm:Request with the classes pcm:Object and pcm:Subject through the 

property pcm:hasAttribute. The latter interrelation is achieved by associating the classes pcm:Object and 

pcm:Subject with the class pcm:SecurityContextElement through the property pcm:associatedWith. 

Contextual attributes that are relevant to a request itself, and not to the subject(s) or object(s) of a request –e.g. 

the date/time at which a request takes place– are piggy-backed to a request through the property 

pcm:hasAttribute which interrelates the classes  pcm:Request and pcm:SecurityContextElement. 

 

 
Figure 3: Inferencing based on property transitivity 

 

Finally, the subjects and objects associated with a request, as well as the request itself, are interrelated through 

the object property pcm:associatedWith with the handlers that are responsible for providing the actual 

measured contextual values that these entities possess. The pcm:associatedWith property interrelates the 

classes pcm:Object, pcm:Subject and pcm:Request with the class pcm:Handler. 



 

The aforementioned interrelations are exploited during the evaluation of a request in order to semantically 

infer the context that is attached to the subjects and objects of a request, or to the request itself. Suppose, for 

example, an access control policy that demands that a subject is allowed to access a sensitive data object as long 

as the subject is located in South Europe (SE). Let us assume that, based on the available handlers, the system is 

capable of only collecting location information at the level of cities. Once a request is intercepted with the 

resolved location for the requestor being, say the city of Athens, a number of facts can be semantically inferred 

based on the transitivity of the pcm:associatedWith property and of the subclass relation. These inferred facts 

(see Table 1 and Figure 3) essentially render the evaluation, hence the application, of the access control policy 

feasible, as the system is able to determine that the requestor is actually located in SE, even though the intercepted 

contextual information is specified at a different level of abstraction (i.e. at the city level as opposed to the 

European region level). Note that in Table 1 and Figure 3, the property pcm:isLocatedIn is used instead of the 

property pcm:associatedWith. The former is a sub-property of the latter that interconnects a subject directly 

with the pcm:Location subclass of the pcm:SecurityContextElement class (Figure 2). The use of this sub-

property makes the inferencing process more efficient as now the system can infer from the outset that the 

individual :Athens is in fact an instance of the class pcm:Location and not of any of the other top-level 

concepts of the pcm:SecurityContextElement class. This renders the process of determining which handler 

to invoke for evaluating the request more efficient. 

 

F
ac

ts
 

:s a pcm:Subject; 

pcm:isLocatedIn :Athens. 

:Athens a pcm:City; 

pcm:isLocatedIn :Greece. 

:Greece a pcm:Area; 

pcm:isLocatedIn :SE.  

In
fe

rr
ed

 

fa
ct

s Athens pcm:isLocatedIn :SE. 

:s pcm:isLocatedIn Greece. 

:s pcm:isLocatedIn :SE. 

Table 1: Inferred facts expressed as RDF triples (Turtle notation [6]) 

4 INCORPORATING CONTEXT IN ACCESS CONTROL POLICIES 

The ontological model for access control policies proposed in [2] provides a suitable abstraction that enables the 
contextual knowledge pertaining to access requests to be incorporated into policies, hence considered in access 
control decisions. Nevertheless, as indicated in Section 1, this model suffers several limitations; to overcome 
these limitations, we propose in this section a generalisation of the model in [2]; in particular, in Section 4.1 we 
provide a brief outline of the model and, in Section 4.2, we present the proposed generalisation. 

4.1 An Ontological Model for Access Control Policies 

The model in [2] is based on the Attribute-based Access Control (ABAC) scheme [3] which, due to its inherent 

generality –stemming from its reliance on the generic concept of an attribute– is deemed particularly suitable for 

capturing the contextual knowledge pertaining to access requests [7]. Following the XACML standard [8], the 

model treats an ABAC policy as a nonempty set of ABAC rules; an ABAC rule is associated with a set of relevant 

knowledge artefacts, or attributes, that need to be taken into account for deciding whether an access request must 

be permitted or denied. In this respect, ABAC rules are regarded as knowledge containers for their encompassing 

policies. Ontologically, an ABAC rule takes the form of an instance of the class pac:ABACRule of Figure 4, 

whereas the various knowledge artefacts attached to an ABAC rule are described by the ontological template 

depicted in Figure 4.5 In particular, each concept included in this template identifies a particular knowledge 

artefact, whilst each object property associates a knowledge artefact with an ABAC rule; a brief outline of these 

concepts and properties is provided in Table 2. 

                                                           
5 The pac namespace prefix is defined as part of the ontological model for ABAC policies [9]. 



 

 

 
Figure 4: Ontological model for ABAC policies [2] (namespace prefixes are omitted to reduce clutter). 

 

Knowledge artefact Description Associating object property 

pcm:Object 
Identifies the sensitive object on which access is 

requested. 

pac:hasObject 

Domain: pac:ABACRule 

Range: pcm:Object 

{pac:permit, 

pac:deny} 

Determines the type of authorisation granted; in 

our work we discern between two kinds of 

authorisation, either ‘permit’, or ‘deny’. 

pac:hasAuthorisation 

Domain: pac:ABACRule 

Range: pac:Authorisation 

ppm:Permission 
Identifies the operation (e.g. read, write) to be 

performed on the protected sensitive object. 

pac:hasPermission 

Domain: pac:ABACRule 

Range: ppm:Permission 

pcm:Subject 
Identifies the entity requesting access to the 

protected object. 

pac:hasSubject 

Domain: pac:ABACRule 

Range: pcm:Subject 

pac:Context 

Expression 

Identifies the contextual conditions that must be 

satisfied in order to permit (or deny) a request. 

pac:hasContextExpression 

Domain: pac:ABACRule 

Range: pac:ContextExpression 

Table 2: Generic knowledge artefacts associated with the ABAC rule template 

 

The model in [2] takes special care of context expressions; in particular, it treats context expressions as reified 

versions of the ontological template depicted in Figure 4, hence as individuals of the class 

pac:ContextExpression. The various knowledge artefacts –essentially contextual attributes– that are bound 

by a context expression take the form of parameters of the expression and are represented ontologically as 

instances of the classes that comprise the Security Context Element (see Figure 2); they are associated with the 

individual that represents a context expression through the object property pac:hasParameter. The parameters 

of an expression may be combined through the usual logical connectives. Such logical combinations, however, 

tend to be overly verbose when serialised in an ontology language such as OWL [10] and thus, to increase 

readability, we introduce the classes pac:XContextExpression (where X stands for one of AND, OR, XOR, NOT 

– see Figure 4) with the following intended meanings: if a context expression is represented by an instance of the 

class say pac:ANDContextExpression, its parameters –i.e. the contextual attributes associated with it through 

the pac:hasParameter property– are interpreted as being pairwise conjuncted; likewise, if a context expression 



 

is represented by an instance of the class say pac:NOTContextExpression, its (single) parameter is interpreted 

as being negated; analogous interpretations apply to the rest of the classes pac:ORContextExpression and 

pac:XORContextExpression. Formal definitions –expressed in OWL 2– of these interpretations, hence of the 

meanings intended for each of the classes pac:XContextExpression, can be found in the appendix. Table 3 

presents an example context expression represented by the individual :expr that conjunctively combines two 

parameters represented by the individuals :para1 and :para2. The former is an instance of the class 

pcm:AbstractLocation of the Security Context Element depicted in Figure 2 and specifies the location 

‘Athens’. The latter is an instance of the class pcm:NetworkLocation and specifies a network endpoint. The 

data properties pcm:hasName and pcm:hasIPAddress form part of the Security Context Element with the 

obvious meanings. 

 
:expr a pac:ANDContextExpression; 

pac:hasParameter :para1; 

pac:hasParameter :para2. 

:para1 a pcm:AbstractLocation; 

pcm:hasName :Athens. 

:para2 a pcm:NetworkLocation; 

pcm:hasIPAddress 123.123.123.123”^^xsd:string. 

Table 3: Context expression example 

 

A context expression may be defined recursively, in terms of one or more other context expressions. 

Ontologically, this is represented by including the class pac:ContextExpression in both the domain and 

range of the object property pac:hasParameter (see Figure 4). The example of Table 4 shows a recursively-

defined context expression that includes the context expression represented by the individual :expr1 as a 

parameter. 

 
:expr a pac:ANDContextExpression; 

pac:hasParameter :para1; 

pac:hasParameter :expr1. 

:expr1 a pac:NOTContextExpression;  

pac:hasParameter para2. 

Table 4: Recursive context expression example (:para1 and :para2 are defined as in Table 3) 

4.2 A Generalised Ontological Template for ABAC Rules 

As discussed in Section 1, the model in [2] suffers several limitations: (i) it invariably associates context 

expressions –hence contextual knowledge– with the subject of a request, ignoring the fact that such expressions 

may also need to be associated with the object of a request, the request itself, or any other entity that is deemed 

relevant; (ii) although it prescribes a set of knowledge artefacts that are taken into account by an access control 

policy –namely the subject and object of a request, the kind of access sought (e.g. read or write access), and a 

body of contextual attributes pertaining to the subject of a request– it fails to specify the cardinalities with which 

these knowledge artefacts may be encountered in a policy, or the allowable manners in which they may be 

logically combined; this essentially precludes the articulation of any constraints regarding the exact structure, or 

form, that an access control policy may assume. 

In order to overcome these limitations, we propose a generalisation to the ontological model in [2]. More 

specifically, with regard to the 1st limitation, we propose an approach that enables the association of context 

expressions, hence of contextual knowledge, with any entity that is deemed relevant and not just with the subject 

of a request; this approach is elaborated in Section 4.2.1. With regard to the 2nd limitation, we propose an approach 

that enables stakeholders to harness the knowledge artefacts embodied in an ABAC rule through the articulation 

of a set of well-formedness constraints that form part of a higher-level ontology (HLO): a generic ontological 

model that enables stakeholders to select the knowledge artefacts that are to be incorporated into an ABAC rule 

and, crucially, to prescribe the allowable cardinalities, as well as the allowable logical ways (e.g. conjunctively, 

disjunctively, etc.), with which these artefacts may be combined. In other words, the HLO empowers stakeholders 

to accurately define the structure –in terms of relevant knowledge artefacts– by which their access control policies 

must abide, thus infuse into these policies their particular security and business requirements. Clearly, this leads 



 

to more effective access control policies. Moreover, a seminal benefit of our approach is that it enables reasoning 

–performed automatically by a policy validator–  about the well-formedness of a particular ABAC rule, i.e. about 

its abidance with the constraints of the HLO, thus increasing assurance on the effectiveness of ABAC rules. The 

HLO as well as our approach to reasoning about the correctness of an ABAC rule are further elaborated in Section 

4.2.2;  more details can be found in [11].  

4.2.1 Associating Contextual Knowledge 

A straightforward approach to allowing a context expression to be attached to any entity that is associated with 

a request, and not just with the subject of a request, is to render the pac:hasContextExpression property 

applicable to: (i) any individual of the class pcm:Subject of the Security Context Element that may participate 

in a request without necessarily this individual being the actual subject of the request; (ii) the object associated 

with a request. This can be readily achieved by extending the domain of pac:hasContextExpression to 

include, in addition to the class pac:ABACRule (see Table 2), the classes pcm:Subject and pcm:Object. 

Nevertheless, associating a context expression solely with a subject, or solely with a controlled object, is 

problematic as demonstrated by the example of Table 5.  

 
:rule1 a pac:ABACRule; 

pac:hasPermission :read; 

pac:hasSubject :s; 

pac:hasAuthorisation pac:permit; 

pac:hasObject :o.            

:s pac:hasContextExpression :expr1.          

:expr1 a pac:ContextExpression; 

pac:hasParameter :para2. 

:rule2 a pac:ABACRule; 

pac:hasPermission :read; 

pac:hasSubject :s; 

pac:hasAuthorisation pac:permit; 

pac:hasObject :o.                     

:s pac:hasContextExpression :expr2. 

:expr2 a pac:ContextExpression;  

   pac:hasParameter :para3. 

:para3 a pcm:NetworkLocation; 

pcm:hasIPAddress “120.120.120.120”^^xsd:string. 

Table 5: Associating context solely with a subject or an object (:para2 is defined as in Table 3) 

 

In this example, two ABAC rules, :rule1 and :rule2, are defined. The intended meaning behind the second 

rule is that the subject :s can read the object :o only when the context expression :expr2 is satisfied; :expr2 

states that the IP address associated with :s must be equal to 120.120.120.120. However, from the triples of 

the example of Table 5 there is no way of discerning which context expression, :expr1 or :expr2, refers to 

which rule. This ambiguity stems from the fact that the approach outlined above neglects that the context 

expression that is associated with an entity inside a rule is not the actual, or per se, context of the entity but the 

context that the rule expects to be associated with the entity. In other words, the mere association of a context 

expression with an entity is insufficient by itself to discern the context that a rule requires from an entity to 

possess. 

 
:rule1 a pac:ABACRule; 

pac:hasPermission :read; 

pac:hasSubject :s; 

pac:hasAuthorisation pac:permit; 

pac:hasObject :o.   

pac:hasContextExpression :expr1.          

:s pac:hasContextExpression :expr1. 

:expr1 a pac:ContextExpression;  

pac:hasParameter :para2. 

:rule2 a pac:ABACRule; 

pac:hasPermission :read; 

pac:hasSubject :s; 



 

pac:hasAuthorisation pac:permit; 

pac:hasObject :o; 

pac:hasContextExpression :expr2.                           

:s pac:hasContextExpression :expr2. 

:expr2 a pac:ContextExpression;  

pac:hasParameter :para3. 

:para3 a pcm:NetworkLocation; 

pcm:hasIPAddress 120.120.120.120”^^xsd:string. 

Table 6: Using pac:hasContextExpression twice (:para2 is defined as in Table 3) 

 

One solution that circumvents this problem is to require that, each time the property 

pac:hasContextExpression is used to associate a context expression with an entity, the same context 

expression is also associated with the underlying rule that requires the particular context expression to be 

associated with that entity. This solution, however, requires that the pac:hasContextExpression property is 

used twice each time a context expression is associated with an entity. This is demonstrated by the example of 

Table 6. 

 
Figure 5: Extended ontological template 

 

A more elegant solution is to extend the ontological template of Figure 4 through the introduction of a new 

object property, namely pac:refersTo. As depicted in Figure 5, this property has as domain the class 

pac:ContextExpression and as range the union of the classes pcm:Subject and pcm:Object. As its name 

suggests, its purpose is to attach a context expression to the entity that it refers to. This way, when a context 

expression is associated with an ABAC rule (through the pac:hasContextExpression property of Figure 4), 

it is already attached to the actual entity that it refers to. Adhering to this solution, the example of Table 6 now 

takes the form shown in Table 7.  

 
:rule1 a pac:ABACRule; 

pac:hasPermission :read; 

pac:hasSubject :s; 

pac:hasAuthorisation pac:permit; 

pac:hasObject :o; 

pac:hasContextExpression :expr1.          

:expr1 a pac:ContextExpression; 

pac:hasParameter :para2; 

pac:refersTo :s. 

:rule2 a pac:ABACRule; 

pac:hasPermission :read; 

pac:hasSubject :s; 

pac:hasAuthorisation pac:permit; 

pac:hasObject :o; 

pac:hasContextExpression :expr2.                   

:expr2 a pac:ContextExpression; 

pac:hasParameter :para3; 



 

pac:refersTo :s. 

:para3 a pcm:NetworkLocation; 

pcm:hasIPAddress “120.120.120.120”^^xsd:string. 

Table 7: Associating context using the extended model of Figure 5 (:para2 is defined as in Table 3) 

 

It is to be noted here that the pac:refersTo property is not obligatory in the sense that not all context 

expressions need be associated with an entity from the classes pcm:Subject or pcm:Object. This might be the 

case under the following circumstances: (i) When a context expression refers to the request itself rather than an 

entity that is associated with the request (e.g. when the context expression constrains the time at which a request 

is issued). (ii) When a context expression forms a constituent part of another (recursively-defined) context 

expression which is associated with an entity from the classes pcm:Subject or pcm:Object and the constituent 

expression refers to that same entity. This is depicted, for example, in Table 8 where the context expressions 

:expr1 and :expr2 form constituent parts of the expression :expr and neither of :expr1 and :expr2 is 

attached to an entity from the classes pcm:Subject or pcm:Object as they both refer to the same entity (:s) 

that is referred to by the encompassing expression :expr. Note that, in Table 8, the identifier :para4 specifies 

the type of device (e.g. stationary as opposed to mobile) through which a request must take place as well as the 

OS type of that device. 

 
:expr a pac:XORContextExpression; 

pac:hasParameter :expr1; 

pac:hasParameter :expr2; 

pac:refersTo :s. 

:expr1 a pac:ORContextExpression; 

pac:hasParameter :para1; 

pac:hasParameter :para2. 

:expr2 a pac:ANDContextExpression; 

pac:hasParameter :para3; 

pac:hasParameter :para4.                  

:para4 a pcm:Stationary; 

pcm:hasStationaryOS “Windows10”^^xsd:string. 

Table 8: Associating context using the model of Figure 5 (:para1, :para2 and :para3 are defined as in Table 3) 

 

It is also to be noted that the pac:refersTo property is not functional: the same context expression instance 

may be associated with two or more distinct entities, i.e. two or more distinct individuals from the classes 

pcm:Subject or pcm:Object. 

4.2.2 Higher-Level Ontology 

The HLO comprises a set of well-formedness constraints that specify all those knowledge artefacts –i.e. all those 

concepts from the underlying Context-Aware Security Model– that must, may or must not be embodied in an 

ABAC rule; they also specify the allowable cardinalities with which these knowledge artefacts may appear, as 

well as the allowable values, or ranges of values, that they may assume. In this respect, the HLO defines the 

allowable form, or structure, of an ABAC rule. For example, the ontological template for ABAC rules presented 

in [2] (see Figure 4) may be specified in terms of the well-formedness constraints of Table 96; these constraints 

are expressed as 𝒮ℛ𝒪ℐ𝒬 terminological (TBox) axioms7 [12] that restrict the individuals of the class 

pac:ABACRule, i.e. the individuals that represent ABAC rules. 

 

Axiom 1 pac:ABACRule ⊑ (≤ 1 pac:hasObject.pcm:Object) ⊓ 
 (≥ 1 pac:hasObject.pcm:Object) 
 

Axiom 2 pac:ABACRule ⊑ (≤ 1 pac:hasPermission.ppm:Permission) ⊓ 
 (≥ 1 pac:hasPermission.ppm:Permission) 
 

Axiom 3 pac:ABACRule ⊑ (≤ 1 pac:hasAuthorisation.{pac:permit,pac:deny}) ⊓ 

                                                           
6 The well-formedness constraints of Table 9 provide, in fact, a more detailed specification of the ontological template of 

Figure 4 for it includes cardinality constraints. 
7 𝒮ℛ𝒪ℐ𝒬 is the DL underlying OWL 2; we resort to 𝒮ℛ𝒪ℐ𝒬 due to the conciseness and rigorousness of its notation. 



 

 (≥ 1 pac:hasAuthorisation.{pac:permit,pac:deny}) 
 

Axiom 4 pac:ABACRule ⊑ (≥ 1 pac:hasSubject.pcm:Subject) 
 

Axiom 5 pac:ABACRule ⊑ (≤ 1 pac:hasContextExpression.pac:ContextExpression)  
 

Table 9: Well-formedness constraints for the ontological template of Section 4.1 

 
The 1st constraint stipulates that each ABAC rule must embody exactly one protected resource; ontologically, this 
is expressed by requiring that each instance of the concept pac:ABACRule is associated with exactly one 
individual from the class pcm:Object of the Context-Aware Security Model, and that this association should be 
realised through the object property pac:hasObject. Similarly, the 2nd and 3rd constraints stipulate that each 
ABAC rule must be associated –through  the appropriate properties– with exactly one action from the class 
ppm:Permission (i.e. with exactly one action that is to be performed on the protected resource), and with 
exactly one kind of authorisation (i.e. with exactly one of the instances pac:permit or pac:deny). The 4th and 
5th axioms demand, respectively, that each ABAC rule must be associated –through  the appropriate properties– 
with at least one subject from the class pcm:Subject (i.e. with at least one entity requesting access to the 
protected asset), and with at most one context expression.  

Constraining Context Expressions  

The HLO may encompass constraints that specify the allowable forms of a context expression. As an example, 

consider a constraint whereby any context expression associated with an ABAC rule should invariably 

incorporate at least one location parameter that confines the whereabouts of the subject (say s) of a request to the 

physical location identified as, say, Athens, or to the network location identified by the subnet, say, 123.0.0.0/8. 

Ontologically, this constraint takes the form of a TBox axiom whereby each individual of the class 

pac:ContextExpression is associated with either the individual Athens, or the individual 123.0.0.0/8, and 

that these associations are realised via the property pac:hasParameter; it also demands that the context 

expression refers to the subject s (see Table 10 for a formal definition of this axiom). 
 

pac:ContextExprssion ⊑ ((≤ 1 pac:hasParameter.{Athens}) }) ⊔ (≤ 1 pac:hasParameter. {123.0.0.0/8})) 
 

Table 10: Example well-formedness constraint for a context expression 

Reasoning About Well-Formedness 

As already indicated, one of the main virtues of the proposed generalisation to the ontological model in [2] is that 
it enables reasoning about the correctness of an ABAC rule. This involves reasoning about the abidance of the 
rule by the HLO constraints; an outline of how such reasoning may be performed is in order.  

Firstly, the ABAC rule under validation, say r, is expressed in terms of a set of TBox axioms that specify all 

those knowledge artefact values that are associated with r. As an example, suppose the axiom set of Table 11 

whereby r permits access to the subject s when the action requested is read. 

 

𝑅 ≡ {pac:ABACRule(r), pcm:Subject(s), ppm:Permission(read), pac:Authorisation(permit), 
pac:haSuject(r,s), pas:hasPermission(r,read), pac:hasAuthorisation(r,permit)} 

Table 11: Axiom set for rule r 

 

Secondly, each 𝒮ℛ𝒪ℐ𝒬 TBox axiom corresponding to an  HLO constraint is translated into a Distinguished 

Conjunctive Query with Negation as Failure (DCQnot) [13] that is posed to the axiom set corresponding to 𝑟. 

Such a query aims at discovering any individuals of the class 𝐴𝐵𝐴𝐶𝑅𝑢𝑙𝑒 that violate the axiom: if the query 

returns no such individuals, the axiom –hence the corresponding constraint– is considered to be satisfied; 

otherwise, it is considered to be violated8. Consider, for example, the 1st axiom of Table 9. This axiom is translated 

                                                           
8 This is, in fact, an instance of Negation as Failure (NAF) inferencing: an axiom is considered to hold iff its negation is not 

derivable. 



 

into a DCQnot that attempts to discover whether the class pac:ABACRule contains any individuals that either 

enjoy no associations through the property pac:hasControlledObject with instances of the class 

pcm:Object, or enjoy two or more distinct such associations (see Table 12). This query is posed to the axiom set 

under validation in the form of a SPARQL query that is executed in an OWL reasoner.  

 

pac:ABACRule(𝑥) ∧ 

((not(pac:hasObject(𝑥, 𝑦) ∧ pcm:Object(𝑦)) ∨ 

(pac:hasObject(𝑥, 𝑦) ∧ pac:hasObject(𝑥, 𝑧) ∧ pcm:Object(𝑦) ∧ pcm:Object(𝑧) ∧  not(𝑥 = 𝑦))) 

Table 12: Example query 

 

It is to be noted here that two seminal assumptions underpinning OWL are the Open World Assumption 

(OWA) and non-Unique Name Assumption (non-UNA), which generally prevent reasoning about constraint 

satisfaction [13]. Consider, for instance, the axiom set of Table 9 which fails to specify the resource that is 

protected by 𝑟. According to the OWA, this does not necessarily mean that r does not have such a resource 

associated with it: it merely means that this association is not specified in the particular axiom set. Thus, we 

cannot assert with certainty that the 1st axiom of Table 9 is violated. In order to overcome this obstacle, the 

approach proposed in [13] is adopted whereby the axiom sets that are validated through DCQnot are based on the 

Integrity Constraints (IC) semantics for OWL 2 proposed in [13]; this effectively, enables closed-world reasoning 

when checking the correctness of an ABAC rule again the HLO constraints. 

5 OPTIMISING CONTEXT-BASED INFERENCING AT THE POLICY 

LEVEL 

One of the main virtues of ontologically specifying the contextual conditions that must be satisfied in order for a 

request to be permitted (or denied), is the fact that it enables the identification of inter-policy relations. In 

particular, it enables us to identify whether one ABAC rule is subsumed by another. 

 
:expr1 a pac:ContextExpression; 

pac:hasParameter :Athens. 

:expr2 a pac:ContextExpression; 

pac:hasParameter :iPadPro9.7.    

:Athens a pcm:AbstractLocation. 

:iPadPro9.7 a pcm:Tablet. 

Table 13: Checking property subsumption 

 

Suppose two ABAC rules represented by the instances :rule1 and :rule2 of the class pac:ABACRule. 

Naturally, a prerequisite for :rule2 to be subsumed by :rule1 is that the context expression associated with 

the former logically subsumes the context expression associated with the latter. In other words, the context 

expression associated with :rule2 must be logically inferable from the context expression associated with 

:rule1. Let the context expressions associated with the two rules be represented, respectively, by the instances 

:expr1 and :expr2 of the class pac:ContextExpression. In order to determine whether :expr2 is logically 

inferable from :expr1, the following conditions must hold: (i) If :expr1 is attached, via the property 

pac:refersTo, to an entity (say :e1), then :expr2 must also be attached, via the same property, to an entity 

(say :e2) such that either :e1 and :e2 represent the same entity, or :e1 represents an entity that is considered 

more general than :e2 (for instance, this could be the case when :e1 and :e2 represent groups of subjects). (ii) 

Each and every association that :expr2 has through the pac:hasParameter property must be logically 

inferable from a corresponding association of :expr1. 

 

Name Domain Range  

pac:hasLocationParameter pac:ContextExpression pcm:Location 



 

 

 

 

 

Table 14: Sub-properties of pac:hasParameter 

 

We concentrate on the 2nd condition above. Checking whether this condition holds can be a rather inefficient 

process. Consider, for instance, the simple example of Table 13. Clearly, :expr2 cannot be considered to be 

subsumed by :expr1 for the former has as parameter a type of device (a tablet) whereas the latter has as 

parameter a location. Nevertheless, for this fact to be discovered in an automated manner, it must be verified that 

the individuals :Athens and :iPadPro9.7 are indeed mutually incomparable. Ontologically, this amounts to 

discovering that the two individuals are not instances of a common class from the Security Context Element 

depicted in Figure 2. This effectively means that the path of subclass relations that leads from the class 

pcm:Tablet (i.e. the immediate class to which the individual :iPadPro9.7 belongs) to the top-level class 

pcm:SecurityContextElement, and the corresponding path that leads from the class 

pcm:AbstractLocation (i.e. the immediate class to which the individual :Athens belongs) to 

pcm:SecurityContextElement must be traversed in order to ensure that they do not share any common 

classes. This is a computationally expensive process. 

One way to reduce this computational cost is to define sub-properties of the pac:hasParameter property 

that directly associate a context expression with one of the top-level concepts of the 

pcm:SecurityContextElement depicted in Figure 2. Thus, when a context expression has as a parameter an 

instance of one of these subclasses, the association takes place through the appropriate sub-property rather than 

through the pac:hasParameter property. These sub-properties are shown in Table 14. For instance, the context 

expressions represented by the individuals :expr1 and :expr2 in the example of Table 13, will now be associated 

with their corresponding parameters through the sub-properties pac:hasLocationParameter and 

pac:hasConnectivityParameter respectively. In this way, the subsumption of :expr2 by :expr1 can be 

precluded from the outset, without having to traverse the aforementioned paths since now the two parameters are 

associated with the context expressions through different sub-properties of pac:hasParameter ruling out any 

subsumption relation between them. It is to be noted that the fact that two parameters are associated with a context 

expression through the same sub-property does not necessarily imply that the two parameters are mutually 

comparable.  

6 ABAC REFERENCE IMPLEMENTATION WITH THE ADOPTION OF 

XACML 3.0 

As already discussed, there are many reference implementations of the ABAC model. One example of an access 

control framework that is consistent with ABAC is the eXtensible Access Control Markup Language (XACML) 

[8]; another notable example is the Next Generation Access Control (a.k.a. NGAC) standard [14, 15]. In this 

work we opt for XACML as the basis of our implementation for the semantic authorisation engine. XACML is 

a widely diffused standard, deployed worldwide by many organisations such as banks, insurance companies, 

health care providers. etc. In contrast, NGAC has no practical reference implementation; XACML is superior to 

NGAC in the following aspects: a) separation of authorisation functionality from proprietary operating 

environment; b) attribute and policy management and c) operational efficiency. 

6.1 A Generalised Ontological Template for Context Expressions 

XACML describes both a policy language and an access control decision request/response language. Both 

languages use XSD notations; hence policy definition and request/response elements are serialised as XML 

elements. The policy language details general access control requirements, and has standard extension points for 

defining new functions, data types, combining logic, etc. The request/response language lets you form a query to 

ask whether or not a given action should be allowed, and interpret the result. The response always includes an 

pac:hasDateTimeParameter pac:ContextExpression pcm:DateTime 

pac:hasConnectivityParameter pac:ContextExpression pcm:Connectivity 



 

answer about whether the request should be allowed using one of four values: Permit, Deny, Indeterminate (an 

error occurred or some required value was missing, so a decision cannot be made) or Not Applicable (no policy 

available to this service addresses this request). 
 

 
Figure 6: Extended XACML Flow & Architectural Components 

The specification defines five main components (see Figure 6) that handle access decisions; namely Policy 

Enforcement Point (PEP), Policy Administration Point (PAP), Policy Decision Point (PDP), Policy Information 

Point (PIP), and a Context Handler. 

The functional purpose of the main components is:  

 The Policy Administration Point (PAP) provides an interface or API to manage the policies that are 

stored in the repository and provides the policies to the Policy Decision Point (PDP). 

 The Policy Enforcement Point (PEP) is the interface to the external world. It receives the application 

specific access requests and translates them to XACML access control requests, then it denies or allows 

access based on the result provided by the PDP. 

 Policy Decision Point (PDP) is the main decision point for the access requests. It collects all the 

necessary information from other actors and yields a decision. 

 Policy Information Point (PIP) is the point where the necessary attributes for the policy evaluation are 

retrieved from several external or internal actors. The attributes can be retrieved from the resource to be 

accessed, environment (e.g. time), subjects, and so forth. 

In this paper, we also propose a new approach that focuses on the enhancement of the Policy Decision Point 

as it is explained in Sections 6.2, 6.3. As already mentioned, XACML uses XSD notation in order to model the 

three basic artefacts which are required i.e. the policy, the request and the response. Thus, as depicted in Figure 

7, three types of XML documents are processed or produced by an XACML engine in order to judge upon a 

decision: the Policy.xml which serialises an actual policy, the Request.xml which serialises an authorisation 

request and the Response.xml that serialises the output of the engine. 

 
Figure 7: Usage of XML artefacts 



 

6.2 The Usage of an Expert System as an Inference Engine 

Expert Systems use knowledge representation to facilitate the codification of knowledge into a knowledge base 

which can be used for reasoning, i.e., we can process data with this knowledge base to infer conclusions. The 

basic components of an Expert System are presented in Figure 8.  The two foundational concepts include Rules 

and Facts. Rules represent static knowledge (a.k.a. templates) while facts represent dynamic knowledge. In this 

reference implementation, we rely on Drools [16] expert system. The reason behind our choice is the outstanding 

performance of the engine [17] which makes it capable to support near real-time decision making. 

The Rules are stored in the Production Memory and the facts again which these rules are evaluated by the 

Inference Engine are kept in the Working Memory. Facts are asserted into the Working Memory where they may 

then be modified or retracted. A system with a large number of rules and facts may result in many rules being 

true for the same fact assertion; these rules may be in conflict. The Agenda component (see Figure 8) manages 

the execution order of these conflicting rules using a Conflict Resolution strategy.  

  

 
Figure 8: Expert system basic components (taken from [16]) 

 

The idea regarding attribute expansion and policy enforcement is straightforward: each inference type that is 

presented in Table 15 will be modeled in the production memory. Furthermore, the attributes that the Context 

Handler will indicate that are required will be transformed dynamically (per request) to facts that will be persisted 

on the working memory. In order to initialise Rules and Facts two separate parsers were developed that transform 

the JSON-LD entries in Facts and the reasoning expectations to Rules. There are two methods of execution for a 

rule system: Forward Chaining and Backward Chaining; systems that implement both are called Hybrid Chaining 

Systems.  Forward chaining (see Figure 9) is "data-driven" and thus reactionary, with facts being asserted into 

working memory, resulting in one or more rules being concurrently true and scheduled for firing by the Agenda. 

Backward chaining is “goal-driven” and it is outside the scope of this document.  

 

 
Figure 9: Forward chaining execution flow 



 

6.3 Fusing the Expert System with ontological reasoning capabilities 

In our approach we have designed and developed a dedicated parser called ContextModel2ExpertSystemRules 

Parser to enhance the expert system (i.e. Drools engine) with inferencing capabilities. More specifically, the goal 

is to populate the Production Memory of the expert system with knowledge coming from the Security Context 

Element (see Figure 2) in order to fuse it with semantic authorisation capabilities. To accomplish this goal, the 

parser injects into the production memory all the classes, properties and instances of the Security Context Element 

as knowledge facts (in the form of triples). This input is combined with a number of meta-rules that have been 

created and inserted into the production memory in order to constitute the expert system capable of inferencing 

additional facts at run-time (see the example in Table 11). In particular, the proposed semantic authorisation 

engine supports the following basic types of inferencing: Property Transitivity; Sub-property Transitivity; 

Supertype Inheritance; Class Transitivity; Knowledge Expansion through Domain and Range Generalisation.  

We note that the use of an expert system along with a fusing technique that enhances its ‘traditional’ 

propositional logic reasoning with valuable ontological reasoning capabilities is considered by the authors as the 

most appropriate way for performing context-aware policy enforcement in the domain of cloud computing. The 

authorisation engines used especially in the cases of cloud applications, with the often unforeseen numbers of 

users and amounts of access requests, should be accurate and efficient. The option of exploiting any of the well-

known Description Logic (DL) reasoners [18] in order to perform the necessary inferencing and policy 

enforcement, may have the outcome of improved context expressivity and thus accuracy but would significantly 

delay the outcome of access control decisions [19]. On the contrary, the proposed approach is efficient for access 

control purposes since it keeps the valuable knowledge expressed in semantics without having to perform any 

time-consuming queries at run-time.  

In Table 15 below, we present the different kinds of inference types supported for ontological reasoning along 

with some examples. We begin with the Property Transitivity description: for any given knowledge triple (s1, 

pred, o1) that has as a predicate a transitive object property (pred), if there is at least one more knowledge 

triple with the same object property , i.e. (s2, pred, o2), and subject the same as the object of the first triple 

(s2 equalsTo o1) then a new, inferred triple should be created, having the same object property, the subject 

of the first triple and the object of the second triple, i.e. (s1, pred, o2). In a similar vein, the Sub-property 

Transitivity is described as follows: for any given object property (pred) that is sub-property of another object 

property (pred.parent), if there is at least one knowledge triple (s, pred, o) then there should be a new 

inferred triple with the same subject and object but with a property that is the parent of the given object property 

(s, pred.parent, o). The Supertype Inheritance is defined as follows: for any given instance of a class (s, 

isA, clazz) that has a parent there should be a new inferred instance of the parent class (s, isA, 

clazz.parent). The Class Transitivity is described as follows: for any given class that has a parent class (a, 

subClassOf, b) that is a sub-class of a third class (b, subClassOf, c) then there should be a new class that 

is a subclass of the third class (a, subClassOf, c). The Knowledge Expansion through Range Generalisation 

involves the following description: for any given knowledge triple (s, pred, o) with an object that is an 

instance of class (o, isA, clazz) that has a parent (i.e. using the supertype inheritance for o) then there should 

be a new inferred triple with the same object that is considered an instance of the parent class [(s, pred, o) 

where (o, isA, clazz.parent)]. The Knowledge Expansion through Domain Generalisation refers to the 

following: for any given knowledge triple (s, pred, o) with a subject that is an instance of class (s, isA, 

clazz) that has a parent (i.e. using the supertype inheritance for s) then there should be a new inferred triple 

with the same subject that is considered an instance of the parent class [(s, pred, o) where (s, isA, 

clazz.parent)]. 

 

Property Transitivity 

Example Facts :s a pcm:Subject; 

pcm:isLocatedIn :Athens. 

:Athens a pcm:City; 

pcm:isLocatedIn :Greece. 

:Greece a pcm:Area; 

pcm:isLocatedIn :SouthEurope. 

:SouthEurope a pcm:Area. 



 

Example Inferred Facts :Athens pcm:isLocatedIn :SouthEurope. 

:s pcm:isLocatedIn :Greece. 

:s pcm:isLocatedIn :SouthEurope. 

Meta-rule rule "Knowledge Expansion through Property Transitiveness" 

when 

$pred: ObjectProperty(transitive == true ) 

$triple1: KnowledgeTriple( predicate == $pred ,  

$subject1: subject,  

$object1: object  

)  

$triple2: KnowledgeTriple( predicate == $pred ,  

subject == $object1 

)  

not ( 

 exists( 

KnowledgeTriple(  

predicate == $pred ,  

subject == $triple1.subject, 

object == $triple2.object 

)  

)  

) 

then 

KnowledgeTriple newtriple = new KnowledgeTriple( 

$triple1.getSubject(),  

$pred , 

$triple2.getObject() 

); 

insert(newtriple); 

end 

Sub-property Transitivity 

Example Facts pcm:areaContainsRegion rdfs:subPropertyOf pcm:areaContainsArea.   

:Sachara a pcm:Region. 

:Africa a pcm:Area; 

pcm:areaContainsRegion :Sachara. 

Example Inferred Facts :Africa pcm:areaContainsArea :Sachara. 

Meta-rule rule "Knowledge Expansion through Sub-Property Transitiveness" 

when 

$pred: ObjectProperty( parent != null ) 

$triple: KnowledgeTriple( predicate == $pred , 

$subject1: subject ,  

$object1: object  

)  

not (  

exists( 

KnowledgeTriple( predicate == $pred.parent ,  

subject == $triple.subject ,  

object == $triple.object   

)  

)  

) 

then 

KnowledgeTriple newtriple = new KnowledgeTriple( 

$triple.getSubject(), 

$pred.getParent(), 

$triple.getObject() 



 

); 

insert(newtriple); 

end 

Supertype Inheritance 

Example Facts pcm:City rdfs:subClassOf pcm:Area.   

:Athens a pcm:City. 

Example Inferred Facts :Athens a pcm:Area. 

Meta-rule rule "Supertype Inheritance Inference" 

when 

$instance: InstanceOfClazz( clazz.parent !=null ) 

not (  

exists (  

InstanceOfClazz( name == $instance.name ,  

clazz == clazz.parent) 

) 

) 

then 

InstanceOfClazz newinstanceofclazz =  

new InstanceOfClazz( 

$instance.getName(), 

$instance.getClazz().getParent() 

); 

insert(newinstanceofclazz); 

end 

Class Transitivity 

Example Facts pcm:Continent rdfs:subClassOf pcm:Area.   

pcm:Region rdfs:subClassOf pcm:Continent.   

Example Inferred Facts pcm:Region rdfs:subClassOf pcm:Area.   

Meta-rule rule "Class Transitiveness Inference" 

when 

$clazz: Clazz( parent != null , parent.parent != null)  

not (  

exists (  

Clazz( name==$clazz.name,  

parent == $clazz.parent.parent  

)  

)  

) 

Clazz newclazz = new Clazz( $clazz.getName(), 

$clazz.getParent().getParent()); 

insert(newclazz); 

end 

Knowledge Expansion through Range Generalisation 

Example Facts pcm:Area pcm:areaContainsArea pcm:Area. 

pcm:Country rdfs:subClassOf pcm:Continent.   

pcm:Continent rdfs:subClassOf pcm:Area.   

:Europe a pcm:Continent; 

pcm:areaContainsArea :Greece. 

:Greece a pcm:Country.  

Example Inferred Facts :Europe a pcm:Continent; 

pcm:areaContainsArea :Greece. 

:Greece a pcm:Area. 

Meta-rule rule "Knowledge Expansion through Range Generalisation" 

when 

$triple: KnowledgeTriple()  

$objectinstance: InstanceOfClazz(name == $triple.object.name, 



 

clazz != $triple.object.clazz  

) 

not (  

exists(  

$newtriple: KnowledgeTriple(  

predicate == $triple.predicate , 

subject == $triple.subject,  

object.name == $triple.object.name , 

object.clazz != $triple.object.clazz 

)  

) 

) 

then 

KnowledgeTriple newtriple = new KnowledgeTriple( 

$triple.getSubject() , 

$triple.getPredicate() , 

$objectinstance  

); 

insert(newtriple); 

end 

Knowledge Expansion through Domain Generalisation 

Example Facts pcm:Area pcm:areaContainsArea pcm:Area. 

pcm:Country rdfs:subClassOf pcm:Continent.   

pcm:Continent rdfs:subClassOf pcm:Area.   

:Europe a pcm:Continent;  

pcm:areaContainsArea :Greece. 

:Greece a pcm:Country.  

Example Inferred Facts :Europe a pcm:Area;   

pcm:areaContainsArea :Greece. 

Meta-rule rule "Knowledge Expansion through Domain Generalisation " 

when 

$triple: KnowledgeTriple()  

$subjectinstance: InstanceOfClazz( 

name == $triple.subject.name,  

clazz != $triple.subject.clazz  

) 

not (  

exists(  

$newtriple: KnowledgeTriple(  

predicate == $triple.predicate , 

object == $triple.object,  

subject.name == $triple.subject.name , 

subject.clazz != $triple.subject.clazz 

)  

)  

) 

then 

KnowledgeTriple newtriple = new KnowledgeTriple(  

$subjectinstance , 

$triple.getPredicate() , 

$triple.getObject()  

); 

insert(newtriple); 

end 

Table 15: Fusing Drools with inferencing capabilities (meta-rules are expressed as Drools rules) 

 



 

We note that on top of these meta-rules that are injected in the production memory of the expert system for 

supporting the basic types of ontological inferencing, we have created a number of meta-rules for checking the 

consistency of the knowledge triples that are fed into the expert system. These meta-rules are used for checking 

the consistency of: 

 Knowledge Triples based on Domain Restrictions. 

 Knowledge Triples based on Range Restrictions. 

 Sub-property Definition based on Domain Restrictions. 

 Sub-property Definition based on Range Restrictions. 

Based on this approach, our enhanced expert system is able to inject to its working memory all the inferred 

facts necessary for correctly evaluating the active context-aware access control policies. For example, the inferred 

facts described in Table 1 of Section 3 can be produced without the use of a time-consuming DL reasoner but 

through the efficient assessment of the relevant meta-rules inserted into the production memory of the system. 

Specifically, only the Property Transitivity meta-rule is adequate for “realizing” that since Athens is located in 

Greece (which is located in South Europe) then Athens is also located in South Europe (see also Table 

15). In addition, since the Subject that is requesting access to sensitive data is located in Athens (which the 

expert system just inferred that is located in South Europe) then the Subject is also located in South Europe, 

allowing for the successful evaluation of the relevant policy and resulting to the access permission. 

7 RELATED WORK 

This section provides brief overviews of existing approaches to access control in cloud environments; it also 

outlines existing approaches to context modelling, as well as to the declarative representation of policies. 

7.1 Access Control Schemes and Approaches 

Recently, several access control schemes for safeguarding sensitive data in the cloud –hence alleviating the 

security concerns associated with cloud storage– have been proposed. Several schemes focus on secure data 

sharing among a group of users [20–23]. These generally rely on computationally-expensive re-encryptions of 

the shared data in order to protect them against security threats from internal users. An interesting approach that 

does not require re-encryption is the Secure Data Sharing in Clouds (SeDaSC) methodology proposed in [24]. In 

particular, SeDaSC provides protection against insider threats through efficient forward and backward access 

control schemes. More specifically, the SeDaSC methodology is based on a trusted cryptographic server (CS) 

which is responsible for encrypting sensitive data files, each with a single symmetric key, before storing them in 

the cloud; the CS is also responsible for determining whether a particular user (a data requestor) can read, or 

write to, a sensitive data file. To this end, the CS employs access control lists (ACLs) defined for each data file 

by the file’s owner. It also provides a key-partitioning scheme whereby, for each user included in the ACL of a 

data file, the corresponding symmetric key used for encrypting the file is divided into two portions such that both 

of them are required for decrypting the data; the one portion is kept at the CS, whereas the other one is securely 

sent to the user. Through a user’s portion of the key, the CS can determine whether a user is eligible to read, or 

write, a sensitive data file; it can also protect against insider security threats by enabling forward access control 

that precludes users that are removed from an ACL from accessing the corresponding data file; finally, it enables 

backward access control by forbidding new users that are added to an ACL to view prior updates to the 

corresponding data file. In contrast to the work reported in this paper, however, the SeDaSC methodology –as 

well as the approaches reported in [20–23]– does not take into account the contextual information upon which 

an access control decision may depend; in addition, access control decisions are taken solely on the basis of 

syntactically-parsed information from the ACLs without any possibility for semantic inferencing; last but not 

least, it lacks any means of reasoning about the correctness and consistency of the access control policies. 

Other approaches to cloud-based access control focus on exploiting trust relationships between the data 

owners and data requestors [25–27]. The work in [27] in particular proposes a multi-dimensional scheme that is 

based on individual trust values that are calculated by the data owner, as well as on public reputation values that 

are provided by one or more reputation centres (RCs). More specifically, the data owner encrypts the data with 

a single symmetric key 𝐾 which is then divided into a number of distinct parts 𝐾0, 𝐾1, … , 𝐾𝑛 (𝑛 ≥ 0) such that 



 

the decryption of the data requires all 𝑛 + 1 key parts. 𝐾0 is encrypted by the data owner with a public attribute 

key that corresponds to a particular trust attribute of interest, whereas each of 𝐾1, … , 𝐾𝑛 is encrypted with the 

public key of a distinct RC. The encrypted data and keys are uploaded to the cloud. Each time now a user requests 

access to the encrypted data, the CSP forwards the request to the RCs and to the data owner in order to determine 

whether the user enjoys the required reputation and trust for accessing the data – a determination based on 

minimum trust and reputation thresholds set by the data owner. If the user is deemed eligible to access the data, 

the RCs and the data owner securely send the appropriate keys to the user who then proceeds to decrypt and 

access the data. The proposed scheme is flexible in that it can be based solely on individual trust values 

(calculated by the data owner), or solely on public reputation values (provided by the RCs); it can also be based 

on any number of RCs (naturally, the greater the number of RCs the more accurate the reputation value). In 

contrast to the work reported in this paper, however, trust-based access control schemes generally ignore the 

contextual information pertaining to an access request that often needs to be taken into account in order to arrive 

at an access decision. They also lack the means of performing any semantic inferencing during policy 

enforcement or of reasoning about the correctness and consistency of the access control policies. 

Trust-based access control schemes can impact the privacy of the trustor (data owner) as the evaluation of 

trust may reveal sensitive information about the trustor (such as his/her preferences, opinions, beliefs and 

interests). It can also threaten the privacy of the RCs that provide trust and reputation evidence. Safeguarding 

privacy is therefore of utmost importance for the viability of trust-based access control schemes. To this end, the 

work in [28] proposes two schemes to preserve privacy in trust evaluation. The schemes are based on two 

independent entities that are assumed not to collude with each other: the Authorised Proxy (AP), which is 

responsible for access control and management of aggregated trust evidence data, and the cloud-based Evaluation 

Party (EP) that processes the data collected from a number of trust evidence sources. The EP processes the data 

in an homomorphically-encrypted form and yields an encrypted trust “pre-evaluation result”. Subsequently, when 

a user requests the pre-evaluation result, the EP first checks with the AP whether the user is eligible to access 

this result; if the check is positive: either (i) the AP re-encrypts the pre-evaluation result (which has already been 

obtained from the EP) such that it can be decrypted by the requestor and sends it to the requestor (1st scheme); or 

(ii) the AP is prevented from obtaining the pre-evaluation whilst still allowing its decryption by the requestor (2nd 

scheme). The 1st scheme is more computationally-efficient than the 2nd one, whereas the 2nd one is more secure 

as the AP is not fully trusted. 

An entirely different approach is proposed in [29] which focuses on hardening the network functions 

virtualisation infrastructure (NFVI) in CSP data centres. The NFVI is the set of all hardware and software 

components required for the deployment of virtualised network functions (VNFs) such as load balancers, 

firewalls, IDSs, etc. The approach introduces the NFVI Trust Platform (NFVI-TP): a middleware that provides 

a root trusted module (RTM) that ensures that every component deployed on top of the NFVI-TP is trustworthy 

(e.g. by verifying that it is provided by a trustworthy party). To this end, the NFVI-TP dynamically deploys 

security functions such as resource access functions, data access functions, encryption/decryption and 

authentication functions, etc., as well as trust evaluation functions, trust management functions, and 

recommender functions. Through the use of these functions, the NFVI-TP ensures that the various VNFs 

deployed on top of it perform in a secure and trustworthy manner. No attempt is made, however, to take into 

account any contextual information pertaining to access requests.  

7.2 Modelling Context in Access Control 

A number of approaches to context modelling have been proposed. In [30, 31] detailed reviews of context models 

are provided that range from key-value models, to graphical models, mark-up schemes, object-oriented models, 

logic-based models and ontology-based models. In [32], Miele et al. propose a context model approach that was 

initially developed for mobile devices and later extended for capturing the knowledge that lurks in service-based 

applications [33]. In [34], an ontological model of the W4H classification for context is proposed. W4H stands 

for “who, where, when, what, how” and provides a set of generic classes, properties, and relations that exploit 

the five semantic dimensions of identity, location, time, activity and device profiles. A similar approach is 

reported in [35], where the ‘five Ws’ of context are identified: Who, What, Where, When, and Why. In [36], 

ContextUML is proposed – an approach that uses a UML-based modelling language specifically designed for 

Web services. ContextUML considers that context contains any information that can be used by a Web service 

to adjust both its execution and its output.  



 

Exploiting context in access control mechanisms is a clear direction of on-going research. Even dedicated 

context-aware extensions to traditional access control models (e.g. Role-based Access Control - RBAC) either 

do not cover all the aspects of the contextual information required with a reusable and extensible security related 

context model, or are proven cumbersome to maintain in dynamic environments where potential requestors are 

not known at design-time and often change their roles [37]. On the other hand, the ontological models that exist 

(e.g. [34]) do not cover all the security requirements associated with the lifecycle of a cloud application (i.e. both 

bootstrapping and operation phases). Usually, they fail to cover the full range of contextual elements that are 

associated with the security enhancement of the sensitive data managed by the cloud applications, or they are 

driven by heavy inferencing that is inefficient [38]. 

7.3 Modelling Policies 

Turning now to the semantic representation of policies and policy rules, a number of relevant approaches have 

been proposed in the literature [39–41]. These generally rely on the expressivity of DLs, and particularly on 

OWL, for capturing the various knowledge artefacts that underpin the definition of a policy. In [39], KAoS is 

presented – a generic framework offering: (i) a human interface layer for the expression of policies that constrain 

the actions that an agent is allowed to perform in a given context; (ii) a policy management layer that is capable 

of identifying and resolving conflicting policies; (iii) a monitoring and enforcement layer that encodes policies 

in a suitable programmatic format for enforcing them. Contextual conditions that must be taken into account in 

access control decisions are expressed as OWL property restrictions. A main drawback of the KAoS approach is 

the fact that its reliance on OWL raises concerns about the efficiency with which semantic inferencing can be 

performed dynamically, when policies are evaluated against incoming access requests. In order to alleviate these 

concerns, KAoS encodes policies in a programmatic format. Nevertheless, this precludes the performance of any 

updates to the policies dynamically, during system execution, as such updates would naturally require the 

(updated) policies to be re-compiled to the programmatic format. 

In [40] Rei is proposed – a framework for specifying, analysing and reasoning about policies. Rei adopts 

OWL-Lite for the semantic specification of policies. A policy comprises a list of rules that take the form of OWL 

properties, as well as a context that defines the underlying policy domain. Rei provides a suitable ontological 

abstraction for the representation of a set of desirable behaviours that are exhibited by autonomous entities. Rei 

resorts to the use of placeholders as in rule-based programming languages for the definition of variables. These 

variables are purportedly required for expressing policy rules in which no concrete values are provided for one 

or more of the contextual attributes – e.g. rules of the form “subject s is allowed to access object o only when s 

is located in the same area as another subject s’”. This, however, essentially prevents Rei from exploiting the 

full inferencing potential of OWL as policy rules are expressed in a formalism that is alien to OWL. In contrast, 

variables could have instead been modelled in terms of OWL’s anonymous individuals. 

In [41] the authors propose POLICYTAB for facilitating trust negotiation in Semantic Web environments. 

POLICYTAB adopts ontologies for the representation of policies that guide a trust negotiation process ultimately 

aiming at granting, or denying, access to sensitive Web resources. These policies essentially specify the 

credentials that an entity must possess in order to carry out an action on a sensitive resource that is under the 

ownership of another entity. Nevertheless, no attempt is made to model the context associated with access 

requests.  

On a different note, Conceptual Graphs (CGs) [42] may be used for capturing the various knowledge artefacts, 

and the properties thereof, involved in the definition of an access control policy. In particular, an approach 

analogous to the one proposed in [42] may be utilised whereby both the knowledge artefacts that characterise an 

access request, as well as the ones that characterise an access control policy are modelled in terms of CGs. Then, 

in order to determine whether the policy is applicable to the request, the degree of similarity between the two 

CGs is calculated possibly through the use of semantic inferencing; if a match is determined, the policy is deemed 

applicable. Nevertheless, CGs are not currently as widespread as other semantic technologies (such as OWL) and 

therefore generally lack the extended tooling support that these technologies enjoy (e.g. in terms of graphical 

editors and reasoning mechanisms that perform semantic inferencing). 

Finally, markup languages such as RuleML [43], XACML [8], SAML [44] and WS-Trust [45] provide 

declarative formalisms for the specification of policies. Nevertheless, they do not provide any means of capturing 

the knowledge that dwells in policies. This brings about the following disadvantages: (i) it precludes any form of 

semantic inferencing when evaluating access request, as well as when identifying inter-policy relations; (ii) it 



 

leads to ad-hoc reasoning about policy compliance, one which is tangled with the particular vocabularies that are 

utilised for articulating the rules according to which the reasoning takes place. 

8 CONCLUSIONS  

This paper has proposed a generalised ontological model for the semantic representation of context-aware access 
control policies. The model is founded on the basis of a set of relevant knowledge artefacts that accurately capture 
a wide range of contextual attributes that must be taken into account in order to permit, or deny, an access request. 
The model bears the following seminal characteristics. (i) It is capable of taking into account the context 
pertaining to any entity that is deemed relevant to a request and not just to the subject of are request. (ii) It enables 
stakeholders to accurately define –by priming the HLO with suitable constraints– the structure by which their 
access control policies must abide and thus infuse into these policies their particular security and business 
requirements. (iii) It enables reasoning –performed automatically by a policy validator–  about the well-
formedness of a particular access control policy, i.e. about its abidance by the constraints stipulated by the 
stakeholder in the HLO. Moreover, the proposed generalisation paves the way for automated reasoning regarding 
the identification of potential inter-policy relations, such as contradicting or subsuming polices, that may affect 
the effectiveness of the policies. 

Another important aspect of this work is the exploitation of the proposed ontological model through the 

implementation of a reference authorisation engine that adheres to the ABAC paradigm. More specifically, we 

have devised and implemented a context-aware access control engine that essentially materialises one of the core 

artefacts of XACML 3.0, namely the PDP. Moreover, we have exploited a widely-adopted expert system (Drools) 

and enhanced it with reasoning capabilities by injecting into its production memory a series of meta-rules. These 

meta-rules substitute some of the most valuable functionalities of DL reasoners with respect to ontological 

reasoning, for they provide the advantage of rapidly producing inferred facts. Such inferred facts, along with the 

use of the proposed ontological template, enable the efficient evalution of context-aware access control policies 

in a manner appropriate for highly-dynamic cloud environments. 

We are currently in the process of constructing an editor for facilitating the priming of the HLO with well-

formedness constraints. The editor parses the underlying context model and prompts the user to specify which 

concepts must, may or must not be embodied in an ABAC rule, as well as their corresponding allowable 

cardinalities. Moreover, for each concept the editor prompts the user to select its allowable values, i.e. all those 

instances that may participate in the formation of the rule. 
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APPENDIX 

The table below presents formal definitions –expressed in OWL 2– of the meanings intended for the abbreviations 
introduced through the classes pac:XContextExpression (X ∷= AND | OR | XOR | NOT) of Figure 2. The 
identifiers prefixed with “:” represent anonymous individuals; _:p1 and _:p2 represent (arbitrary) instances of 
the Security Context Model (i.e. instances of the classes depicted in Figure 2). 
 

Abbreviation Definition 

:expr a pac:ANDContextExpression; 

  pac:hasParameter _:p1; 

  pac:hasParameter _:p2. 

:expr a owl:intersectionOf pac:ContextExpression _:x. 

_:x a owl:intersectionOf _:x1 _:x2. 

_:x1 a owl:Restriction; 

  owl:onProperty pac:hasParameter; 

  owl:hasValue _:p1. 

_:x2 a owl:Restriction; 

  owl:onProperty pac:hasParameter; 

  owl:hasValue _:p2. 

:expr a pac:NOTContextExpression; 

  pac:hasParameter _:p1; 

  

:expr a owl:intersectionOf pac:ContextExpression _:x. 

_:x a owl:complentOf _:x1. 

_:x1 a owl:Restriction; 

  owl:onProperty pac:hasParameter; 

  owl:hasValue _:p1. 

:expr a pac:ΟRContextExpression; :expr a owl:intersectionOf pac:ContextExpression _:x. 



 

  pac:hasParameter _:p1; 

  pac:hasParameter _:p2. 
_:x a owl:Restriction; 

  owl:onProperty pac:hasParameter; 

  owl:someValuesFrom owl:oneOf _:p1 _:p2. 

:expr a pac:XΟRContextExpression; 

  pac:hasParameter _:p1; 

  pac:hasParameter _:p2. 

:expr a owl:intersectionOf pac:ContextExpression _:x. 

_:x a owl:intersectionOf _:x1 owl:complentOf _:x2. 

_:x1 a owl:Restriction; 

  owl:onProperty pac:hasParameter; 

  owl:someValuesFrom owl:oneOf _:p1 _:p2. 

_:x2 a owl:intersectionOf _:x3 _:x4 

_:x3 a owl:Restriction; 

  owl:onProperty pac:hasParameter; 

  owl:hasValue _:p1. 

_:x4 a owl:Restriction; 

  owl:onProperty pac:hasParameter; 

  owl:hasValue _:p2. 

Interpretation of pac:XContextExpression 


