
Ontological Framework for Ensuring Correctness of Security
Policies in Cloud Environments

Full Paper

Simeon Veloudis
SEERC, The University of Sheffield
International Faculty CITY College

Thessaloniki, Greece
sveloudis@seerc.org

Iraklis Paraskakis
SEERC, The University of Sheffield
International Faculty CITY College

Thessaloniki, Greece
iparaskakis@seerc.org

Christos Petsos
SEERC, The University of Sheffield
International Faculty CITY College

Thessaloniki, Greece
chpetsos@seerc.org

ABSTRACT
By embracing the cloud computing paradigm enterprises are able to
boost their agility and productivity whilst realising significant cost
savings. However, many enterprises are reluctant to adopt cloud
services for supporting their critical operations due to security and
privacy concerns. One way to alleviate these concerns is to devise
policies that infuse suitable security controls in cloud services. This
work proposes a class of ontologically-expressed rules, namely the
so-called axiomatic rules, that aim at ensuring the correctness of
these policies by harnessing the various knowledge artefacts that
they embody. It also articulates an adequate framework for the
expression of policies, one which provides ontological templates
for modelling the knowledge artefacts encoded in the policies and
which form the basis for the proposed axiomatic rules.

CCS CONCEPTS
• Information systems→Ontologies; Secure online transactions;
• Security and privacy→ Software and application security;
• Applied computing → IT governance; • Computer systems
organization→ Cloud computing;

KEYWORDS
Policies, Security, Privacy, Ontologies, Cloud computing, Gover-
nance, OWL 2
ACM Reference format:
Simeon Veloudis, Iraklis Paraskakis, and Christos Petsos. 2017. Ontological
Framework for Ensuring Correctness of Security Policies in Cloud Environ-
ments. In Proceedings of BCI ’17, Skopje, Macedonia, September 20–23, 2017,
8 pages.
https://doi.org/10.1145/3136273.3136289

1 INTRODUCTION
By enabling ubiquitous access to shared pools of distributed and
elastic resources, cloud computing represents a significant shift

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BCI ’17, September 20–23, 2017, Skopje, Macedonia
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5285-7/17/09. . . $15.00
https://doi.org/10.1145/3136273.3136289

towards service-based architectures that offer a theoretically bound-
less scalability and a flexible pay-per-use model [8]. Such a shift
brings about significant advantages for users in terms of cost, flexi-
bility and business agility. In particular, it enables a multitude of
inherently heterogeneous stakeholders, ranging from small and
medium enterprises (SMEs) to health care providers, to realise sig-
nificant cost savings by delegating the storage and processing of
their data to servers that are under the control of third-party cloud
providers. However, relinquishing control of—oftentimes critical—
data naturally raises significant security and privacy concerns that
deter, in general, stakeholders from embracing the cloud paradigm
[6].

We argue that one way to alleviate these concerns, hence bol-
ster the adoption of cloud computing, is to devise suitable policies
that infuse adequate security controls into the applications through
which critical data are stored and accessed in the cloud [14]. For
example, policies may be required that articulate adequate data
fragmentation and distribution schemes that control the manner
in which critical data are partitioned and distributed over distinct
cloud servers for privacy reasons. Consider, for instance, a relational
database table holding sensitive customer information. A policy
may be required whereby this table is fragmented such that cus-
tomer credit card numbers and customer names are always stored
on separate physical servers that are administered by distinct cloud
providers.

The work conducted as part of the PaaSword project [2] offers an
adequate framework for the expression of such policies. PaaSword
aspires to provide a security-by-design solution—essentially a PaaS
offering—that facilitates developers in formulating suitable security
policies for dynamic cloud environments. To this end, it proposes a
novel approach to modelling such policies, one which draws upon
ontological templates that capture the various knowledge artefacts
that are encoded in the policies [15]. In this respect, it advocates a
clear separation of concerns by disentangling the representation of
policies from the actual code that is employed for enforcing them.
This brings about the following seminal advantages with regard to
the governance of policies.

Firstly, it enables automated reasoning about potential inter-
policy relations such as subsumption and contradiction. This is par-
ticularly important as it increases the effectiveness of the policies.
Secondly, it lends itself to automated checks regarding the correct-
ness of the policies by harnessing the various knowledge artefacts
that are encoded in the policies. More specifically, it enables the
articulation of a set of axiomatic rules that restrict the allowable

https://doi.org/10.1145/3136273.3136289
https://doi.org/10.1145/3136273.3136289

Simeon Veloudis, Iraklis Paraskakis, and Christos Petsos

Figure 1: Fragment of the Context Model (namespaces omitted to reduce clutter)

values that one or more knowledge artefacts encoded in a policy
may assume on the basis of the values assigned to certain other
knowledge artefacts. For example, an axiomatic rule may insist
that, if a sensitive data object—e.g. the aforementioned relational
database table—is encrypted with a cipher other than AES-256, then
any fragments of that object should not be landing on servers that
are outside the EU area.

This paper proposes an approach for the representation of ax-
iomatic rules as reifications of abstract ontological templates that
draw upon the ontological templates proposed in [14, 15] for the
expression of policies. One of the main strengths of our approach
is the fact that it enables—by virtue of semantic inferencing—the
generation of new knowledge artefacts that potentially allow the
application of axiomatic rules in situations in which the knowledge
artefacts encoded in a security policy do not match, at the syntactic
level, the corresponding artefacts encoded in the axiomatic rules.
For instance, returning to the example above, a security policy that
states that the relational database table must be fragmented and
distributed over servers that reside in, say, the Frankfurt and Dublin
areas, is deemed to abide by the aforementioned axiomatic rule as
semantic inferencing allows us to determine that these areas are
indeed located in the EU. This clearly absolves developers from
the burden of having to specify fine-grained axiomatic rules that
cover each permissible location of data distribution articulated by
a security policy.

Although our ontological templates are applicable to axiomatic
rules that constrain a wide range of policies, here we confine our-
selves to two particular kinds of policy, namely: (i) Data Encryption
(DE) policies that articulate the kind of cryptographic protection
that a sensitive data object must enjoy in the cloud; (ii) Data Frag-
mentation andDistribution (DFD) policies that specify the manner in
which sensitive data objects are fragmented and distributed across
different cloud servers.

The rest of this paper is structured as follows. Section 2 outlines
an ontological framework for the representation of the knowledge
artefacts that are encoded in DE and DFD policies. Section 3 draws
upon this framework and presents ontological templates for the rep-
resentation of DE and DFD policies. Section 4 proposes ontological
templates for the representation of axiomatic rules that constrain
DE and DFD policies. Section 5 describes how DE and DFD policies

are checked for conformance with axiomatic rules. Finally, Section
6 presents related work and Section 7 outlines conclusions and
future work.

2 REPRESENTING KNOWLEDGE ARTEFACTS
The Context Model (CM) proposed in [16] provides an ontolog-
ical framework for the representation of the knowledge artefacts
that lurk behind DE and DFD policies. Fig. 1 depicts a portion of
the CM that includes only the concepts (classes) that are of inter-
est to the work reported in this paper. At the core of this portion
is the class pdm:DFDEElement which is partitioned by the classes
pdm:DataEncryption, pdm:DataFragmentation and pdm:DataDi
stribution;1 instances of these classes represent, respectively, par-
ticular data encryption, distribution and fragmentation schemes. Sec-
tions 2.1, 2.2 and 2.3 below provide brief accounts of these classes;
for fuller accounts the interested reader is referred to [16].

In addition, the CM comprises the concept pcm:Object (not
shown in Fig. 1 to avoid clutter) which encompasses instances that
represent the actual sensitive data objects that are amenable to the
aforementioned schemes.

2.1 Data Encryption Scheme
The pdm:DataEncryption class encompasses two subclasses, name-
ly pdm:Symmetric and pdm:Asymmetric (see Fig. 1). These sub-
classes comprise instances that represent, respectively, concrete
symmetric and asymmetric cryptographic schemes, with any in-
stances lying at the intersection of the two subclasses representing
hybrid cryptographic schemes—i.e. schemes that combine both
symmetric and asymmetric ciphers (e.g. OpenPGP [4]).

Furthermore, the two subclasses feature properties that associate
the cryptographic schemes that they encompass with the actual
ciphers that implement them (e.g. AES, RSA, etc.), as well as with
the corresponding key sizes used. In particular, for symmetric cryp-
tographic schemes, the data properties pdm:hasSymmetricCipher
and pdm:hasSymmetricKeySize are defined; similar properties are
defined for asymmetric cryptographic schemes.

1The namespace pdm includes all concepts depicted in Fig. 1.

BCI’17, September 20–23, 2017, Skopje

Ontological Framework for Ensuring Correctness of Security Policies in Cloud Environments BCI’17, September 20–23, 2017, Skopje

2.2 Data Fragmentation Scheme
The pdm:DataFragmentation class encompasses two subclasses,
namely pdm:RelationalFragmentation and pdm:Non-relation
alFragmentation (see Fig. 1). These subclasses comprise instances
that represent, respectively, fragmentation schemes suitable for
relational and non-relational database tables. The latter subclass
will not further concern us here for, due to space limitations, we
confine ourselves to relational databases.

Relational fragmentation schemes are further subdivided into
horizontal and vertical ones. Horizontal schemes shard database
tables at the row level and are represented by instances of the class
pdm:HorizontalFragmentation (see Fig. 1); vertical schemes frag-
ment database tables at the column level and are represented by
instances of the class pdm:VerticalFragmentation (see Fig. 1);
fragmentation schemes that partition database tables both horizon-
tally and vertically are represented by instances that lie at the inter-
section of the two classes. The class pdm:VerticalFragmentation
features the data property pdm:hasPrivacyConstraint which de-
termines one or more column pairs that should not appear as
part of the same fragment. A similar data property is defined for
the class pdm:HorizontalFragmentation for determining the row
number(s) at which the fragmentation actually takes place.

2.3 Data Distribution Scheme
The pdm:DataDistribution class is partitioned by the classes
pdm:DistributionMetric, pdm:DistributionLocation and pdm
:Provider (see Fig. 1). The pdm:DistributionMetric class com-
prises instances that represent different metrics that quantify the
distribution of a sensitive data object over physical and virtual
servers, as well as over geographical locations. To this end, it fea-
tures the data properties pdm:NumberOfServers, pdm:NumberOfVM
s and pdm:numberOfLocations that associate, respectively, these
instances with counts of physical and/or virtual machines, as well
as with counts of distinct geographical locations.

The pdm:DistributionLocation class is further partitioned
into the classes pdm:PreferredLocation and pdm:ExcludedLocat
ion. The former encompasses instances that represent distinct phys-
ical locations that should be considered as ‘appropriate’ when dis-
tributing sensitive data; the latter encompasses instances that rep-
resent locations that should be avoided when distributing sensitive
data.

Finally, the pdm:Provider class is further partitioned into the
classes pdm:PreferredProvider and pdm:ExcludedProvider that
encompasses instances that represent, respectively, trusted and un-
trusted IaaS providers that should be opted for, or avoided, when
distributing sensitive data.

3 ONTOLOGICAL TEMPLATES FOR POLICY
RULES

The ontological meta-model depicted in Fig. 2 forms the basis for
the representation of security policies in the PaaSword project.
This meta-model is suitably reified in order to accommodate the
ontological templates in terms of which the security policies are
expressed. These ontological templates bundle together all those
concepts and properties from the underlying CM that are required

Figure 2: Ontological meta-model for policies

for capturing the various knowledge artefacts that lurk behind the
policies.

The reification process for the meta-model, as well as the onto-
logical templates for the expression of DE and DFD policies, are
elaborated in Section 3.2 below; an outline of the ontological meta-
model is first in order—for more details the interested reader is
referred to [13].

3.1 Ontological Meta-model
Following an approach inspired by the XACML standard [11], the
meta-model discerns three levels of structural elements: Rules, Poli-
cies and Policy sets (see Fig. 2). Rules are the most elementary struc-
tural elements and the basic building blocks of policies: they are,
in fact, the carriers of the core logic conveyed by the policies. In
this respect, they are associated with the knowledge artefacts in
terms of which this logic is expressed. In particular, they are asso-
ciated with a framework of concepts and properties drawn from
the underlying CM that captures these knowledge artefacts and
their interrelations. For DE and DFD rules this framework is repre-
sented by the ontological templates depicted in Figures 3 and 4 and
elaborated in Section 3.2.

Rules are represented ontologically as instances of the class
pwd:Rule2 (see Fig. 2), whereas policies take the form of instances
of the class pwd:Policy. A policy is associated with its constituent
rules—hence with the ontological templates associated with these
rules—through the object property pwd:hasRule (see Fig. 2).

Policies are also grouped into policy sets. A policy set takes
the form of an instance of the class pwd:PolicySet and is asso-
ciated with its constituent policies through the object property
pwd:belongsToPolicySet. A policy set may exhibit a hierarchical
structure and comprise one or more other policy sets; such recursive
inclusions are captured by rendering the pwd:belongsToPolicySe
t property applicable to policy sets as well (i.e. in addition to
policies—see Fig. 2).

3.2 Ontological Templates for DE and DFD
Rules

We first outline the process whereby the meta-model of Fig. 2 is
reified in order to accommodate the ontological templates that are
associated with DE and DFD rules and hence DE and DFD policies;
we then proceed to present these ontological templates.
2The namespace pwd includes all concepts and properties related to the ontological
meta-model; it also includes the concepts and properties related to the ontological
meta-model for axiomatic rules outlined in Section 4 (see, for example, Fig. 5).

Simeon Veloudis, Iraklis Paraskakis, and Christos Petsos

Figure 3: Ontological template for DE rules

3.2.1 Meta-model Reification. DE (DFD) rules are represented
as instances of the class pde:DERule (pdfd:DFDRule)3 depicted
in Fig. 3 (Fig. 4) which is a subclass—hence a reification—of the
class pwd:Rule. Similarly, DE (DFD) policies take the form of in-
stances of the class pde:DEPolicy (pdfd:DFDPolicy) which is a
subclass of the class pwd:Policy. A DE (DFD) policy is tied to
the DE (DFD) rules that it comprises through the object prop-
erty pde:hasDERule (pdfd:hasDFDRule) which is a sub-property
of the property pwd:hasRule. In a similar vein, DE (DFD) pol-
icy sets take the form of instances of the class pde:DEPolicySet
(pdfd:DFDPolicySet) which is a subclass—hence a reification—of
the class pwd:PolicySet. A DE (DFD) policy set is tied to the DE
(DFD) policies that it comprises through the property pde:belongs
ToDEPolicySet (pdfd:belongsToDFDPolicySet) which is a sub-
property—hence a reification—of the pwd:belongsToPolicySet
property.

3.2.2 Ontological Templates for DE Rules. A DE rule is associ-
ated with the ontological template depicted in Fig. 3. This template
specifies a generic framework of relevant knowledge artefacts in
terms of which the core logic conveyed by DE policies is expressed.
More specifically, it comprises the knowledge artefacts represented
by the concepts pcm:Object and pdm:DataEncryption. The for-
mer concept identifies the sensitive data object which is to be en-
crypted according to the encryption scheme specified by the latter
concept; both concepts were outlined in Section 2. Concrete DE
rules are derived as reifications of this ontological template, by
substituting specific instances for these concepts. For example, Ta-
ble 1 depicts a concrete DE rule whereby the sensitive data object
identified by the pcm:Object instance, say, :o must be encrypted
with the AES symmetric cipher and with a key length of 128 bits4.

3.2.3 Ontological Templates for DFD Rules. ADFD rule is associ-
ated with the ontological template depicted in Fig. 4. This template
specifies a generic framework of relevant knowledge artefacts in

3All concepts and properties of the DE and DFD models are defined in the pde and
pdfd namespaces respectively.
4No particular namespace is provided for concepts, instances and properties that are
introduced as part of examples, e.g. the instance :o.

Figure 4: Ontological template for DFD rules

Table 1: Example DE and DFD rules (in RDF Turtle [1])

D
E
Ru

le

:rule1 a pdm:DERule;
pde:hasCtrldObject :o;
pde:hasDataEncryption :crypto1.

:o a pcm:Object.
:crypto1 a pdm:Symmetric;

pdm:hasCipher "AES"ˆˆxsd:string;
pdm:hasSymmetricKeySize

"128"ˆˆxsd:nonNegativeInt;

D
FD

Ru
le

:rule2 a pdm:DFDRule;
pdfd:hasCtrldObject :o;
pdfd:hasDataFragmentation :fScheme;
pdfd:hasDataDistribution :Frankfurt,

:Dublin.
:o a pcm:Object.
:fDcheme a pdm:VerticalFragmentation;

pdm:hasPrivacyConstraint
"{CCN,CId}"ˆˆxsd:string.

:Frankfurt,:Dublin a pdm:PreferredLocation.

terms of which the core logic conveyed by DFD policies is ex-
pressed. More specifically, it comprises the knowledge artefacts rep-
resented by the concepts pcm:Object, pdm:DataFragmentation
and pdm:DataDistribution. The first concept represents the sensi-
tive data object which is to be fragmented and distributed, whereas
the second and third concepts represent, respectively, the data frag-
mentation and distribution schemes that are to be applied to the
sensitive data object; all three concepts were outlined in Section 2.
As in the case of DE rules, concrete DFD rules are derived as reifica-
tions of this ontological template, by substituting specific instances
for these concepts. For example, Table 1 depicts a concrete DFD
rule whereby the sensitive data object identified by the pcm:Object
instance :o (say a relational database table) must be vertically frag-
mented such that the columns identified by CCN (stands for “Credit
Card Number”) and CId (stands for “CustomerId”) should never
be included in the same fragment and all fragments should land
in servers located in the Frankfurt and Dublin areas (these areas
take the form of instances of the class pdm:PreferredLocation
depicted in Fig. 1).

BCI’17, September 20–23, 2017, Skopje

Ontological Framework for Ensuring Correctness of Security Policies in Cloud Environments

Figure 5: Ontological meta-model for ARs

4 ONTOLOGICAL TEMPLATES FOR
AXIOMATIC RULES

As mentioned in Section 1, axiomatic rules (ARs) restrict the al-
lowable values that one or more knowledge artefacts encoded in
a policy rule may assume on the basis of the values assigned to
certain other knowledge artefacts through other policy rules. ARs
essentially express high-level policies that reflect an organisation’s
business logic, its high-level directions of operation and its overall
stance towards security5.

The ontological meta-model depicted in Fig. 5 forms the basis
for the representation of ARs. This meta-model is suitably reified in
order to accommodate the ontological templates in terms of which
concrete ARs are expressed. These ontological templates bundle
together all those concepts and properties from the underlying CM
that are required for capturing the various knowledge artefacts
that are encoded in the ARs. The reification process for the meta-
model, as well as the ontological templates for the expression of
ARs suitable for DE and DFD rules, are elaborated in Section 4.2
below; an outline of the ontological meta-model of Fig. 5 is first in
order.

4.1 Ontological Meta-Model
Any AR comprises an antecedent and a consequent. The former
articulates a (pre)condition that must be satisfied in order for the
(post)condition articulated by the latter to be enforceable. More
specifically, the former articulates the particular values that certain
knowledge artefacts attached to a policy rule must possess, in order
for the values articulated by the latter—and which refer to certain
other knowledge artefacts attached to one or more other policy
rules—to be enforceable. Suppose, for instance, the AR of Example
4.1.

Example 4.1. The fragments of all relational database tables that
are characterised as ‘critical’ and have been encrypted with the AES
cipher and a key size of 128 bits must be distributed over servers
that are located in the EU.

Such an AR comprises: (i) An antecedent that essentially describes
all those DE rules that are associated with a ‘critical’ database table
and an encryption scheme that employs the AES cipher and a key
size of 128 bits. (ii) A consequent that essentially describes all those
DFD rules that are associated with a ‘critical’ database table and a
data distribution scheme whose locations are confined in the EU.

Ontologically, an AR takes the form of an instance of the con-
cept pwd:AxiomaticRule (see Fig. 5). The antecedent and conse-
quent of an AR are captured, respectively, in terms of the concepts
5Of course, they may also be in line with relevant governmental rules and regulations
(e.g. the EU’s General Data Protection Regulation (EU) 2016/679).

pwd:ARAntecedent and pwd:ARConsequent; these concepts are at-
tached to an AR through the object properties pwd:hasARAntecede
nt and pwd:hasARConsequent respectively (see Fig. 5).

4.2 Ontological Templates for DE and DFD
Axiomatic Rules

We first outline the process whereby the meta-model of Fig. 5 is
reified in order to accommodate the ontological templates that are
associated with DE and DFD ARs; we then proceed to present these
ontological templates.

4.2.1 Meta-model Reification. DFDE ARs take the form of in-
stances of the class pdfde:AxiomaticDFDERule (see Fig. 6)6 which
is a subclass—hence a reification—of the class pwd:AxiomaticRule.
The antecedent and consequent of a DFDE AR are captured, respec-
tively, in terms of two subclasses of the classes pwd:ARAntecedent
and pwd:ARConsequent, namely the classes pdfde:DFDEARAntec
edent and pdfde:DFDEARConsequent (see Fig. 6). Similarly, a DFDE
AR is associated with its antecedent and consequent through two
sub-properties of the object properties pwd:hasARAntecedent and
pwd:hasARConsequent, namely the properties pdfde:hasDFDEAR
Antecedent and pdfde:hasDFDEARConsequent respectively.

4.2.2 Ontological Templates for DFDE ARs. The antecedent of
a DFDE AR is formally described in terms of the ontological tem-
plate shown in Fig. 6. This template encompasses all those knowl-
edge artefacts whose instances may be specified during the for-
mation of a DE or DFD rule, namely the concepts pcm:Object,
pdm:DataEncryption, pdm:DataFragmentation and pdm:DataDi
stribution (see Figures 3 and 4). These instances are associated
with an instance of the class pdfde:DFDEARAntecedent through
the very same properties used for associating them with a DE or a
DFD rule, namely pde:hasCtrldObject, pdfd:hasCtrldObject,
pde:hasDataEncryption, pdfd:hasDataFragmentation and pdf
d:hasDataDistribution. The intention here is to specify through
these instances a particular data encryption, fragmentation or dis-
tribution scheme that must be imposed by a DE or DFD rule on a
sensitive data object in order for that rule to be amenable to the AR,
hence for the AR to be enforceable. The consequent of a DFDE AR is
formally described in terms of an analogous ontological template
(see Fig. 6). Its purpose is to formulate a particular data encryption,
fragmentation or distribution scheme that must be abided by the
DE and DFD rules.

5 ENFORCING DFDE ARS
We now elaborate on the approach that we have implemented for
enforcing the ontological template for the expression of DFDE ARs
outlined in Section 4 upon DE and DFD rules. In particular, Section
5.1 outlines the actual enforcement process and Section 5.2 briefly
elaborates on how semantic inferencing at the level of the CM can
complement, and therefore reinforce, this process.

5.1 Enforcement Process
The enforcement of DFDE ARs proceeds as follows. Each policy
rule R is transformed programmatically into an OWL 2 abstract
6The namespace pdfde includes all concepts and properties related to DE and DFD
ARs.

BCI’17, September 20–23, 2017, Skopje

Simeon Veloudis, Iraklis Paraskakis, and Christos Petsos

Figure 6: Ontological template for DFDE ARs

class [19], one that comprises all those individuals that are associ-
ated, through the appropriate object properties, with the knowl-
edge artefacts attached to R. Consider, for example, the DE rule
of Table 1. This rule is associated with the following knowledge
artefacts: the controlled object instance :o (through the property
pde:hasCtrldObject) and the data encryption scheme :crypto1
(through the property pde:hasDataEncryption). This rule is thus
represented by an abstract class that comprises all those individuals
:x such that: (i) :x has some association with :o through the prop-
erty pde:hasCtrldObject; and (ii) :x has some association with
:crypto1 through the property pde:hasDataEncryption. Such an
abstract class is expressed in OWL 2 as shown in the first row of
Table 2. Similarly, the DFD rule of Table 1 is expressed in terms of
the abstract class shown in the second row of Table 2.

In an analogous manner, the antecedent and consequent of a
DFDE AR are too expressed as OWL 2 abstract classes. For instance,
Table 3 depicts the abstract classes corresponding to the antecedent
and consequent of the DFDE AR of Example 4.1. Note that the
concept :CriticalObject is assumed to be a subclass of the class
pcm:Object that encompasses all those database tables that are
deemed ‘critical’ (including the database table represented by the
individual :o).

We have employed the Pellet DL reasoner [5] for automatically
determining whether a DFDE AR is enforceable and whether a DE
or DFD rule abides by it. In particular, let R be a DE (DFD) rule asso-
ciated with a sensitive data objectd and letAR be a DFDE ARwhose
antecedent specifies a particular data encryption, fragmentation or
distribution scheme for d . The reasoner checks whether any of the
already defined DE and DFD rules are amenable to AR, i.e. whether
their corresponding abstract classes are included in the abstract
class corresponding to the antecedent of AR. If such an inclusion
is found, then the data encryption, fragmentation or distribution
scheme specified by the antecedent ofAR has already been imposed
on d by one or more of these rules. In such a case, theAR is deemed
enforceable and the reasoner proceeds to check whether R abides
by the AR, i.e. whether the abstract class corresponding to R is a

Table 2: Abstract classes for DE and DFD rules

D
E
ru
le

[a owl:Class;
owl:intersectionOf (

[a owl:Restriction;
owl:onProperty pde:hasCtrldObject;
owl:onClass owl:oneOf (:o)

]

[a owl:Restriction;
owl:onProperty pde:hasCryptoType;
owl:onClass owl:oneOf (:crypto1)

]

)
]

D
FD

Ru
le

[a owl:Class;
owl:intersectionOf (
[a owl:Restriction;

owl:onProperty pdfd:hasCtrldObject;
owl:onClass owl:oneOf (:o)

]

[a owl:Restriction;
owl:onProperty pdfd:hasDataFragmentation;
owl:onClass owl:oneOf (:fScheme)

]

[a owl:Restriction;
owl:onProperty pdfd:hasDataDistribution;
owl:onClass owl:oneOf (:Frankfurt, :Dublin)

]

)
]

subclass of the abstract class corresponding to the consequent of
AR.

Suppose, for instance, the DE and DFD rules of Table 1; we want
to check whether the DFD rule abides by the DFDE AR of Example

BCI’17, September 20–23, 2017, Skopje

Ontological Framework for Ensuring Correctness of Security Policies in Cloud Environments

Table 3: Abstract classes for the AR of Example 4.1

an
te
ce
de
nt

[a owl:Class;
owl:intersectionOf (
[a owl:Restriction;

owl:onProperty pde:hasCtrldObject;
owl:onClass :CriticalObject

]

[a owl:Restriction;
owl:onProperty pde:hasCryptoType;
owl:onClass owl:oneOf (:crypto1)

]

)
]

co
ns
eq
ue
nt

[a owl:Class;
owl:intersectionOf (
[a owl:Restriction;

owl:onProperty pdfd:hasCtrldObject;
owl:onClass :CriticalObject

]

[a owl:Restriction;
owl:onProperty pdfd:hasDataDistribution;
owl:onClass owl:oneOf (:EU)

]

)
]

4.1. The reasoner first checks whether there exists a DE or DFD rule
that is amenable to the DFDE AR, i.e. whether there exists a DE or
DFD rule that refers to :o (i.e. the sensitive object associated with
the DFD rule of Table 1) and whose corresponding abstract class
is a subclass of the antecedent of the DFDE AR. This is true as the
abstract class of the first row of Table 2 is indeed a subclass of the
abstract class that corresponds to the antecedent of the DFDE AR
(see Table 3). The reason for this is that the former abstract class de-
mands an association, through the property pde:hasCtrldObject,
with the class that comprises just the individual :o, whereas the
latter abstract class demands an association, through the same prop-
erty, with the entire :CriticalObject class (which encompasses
:o). The DFDE AR is thus enforceable as the data encryption scheme
specified by its antecedent has already been imposed upon :o by
the DE rule of Table 1. The reasoner thus proceeds to determine
whether the abstract class of the second row of Table 2 (which
corresponds to the DFD rule of Table 1) is a subclass of the abstract
class that corresponds to the consequent of the DFDE AR (see Table
3). If it is, we may conclude that the DFD rule of Table 2 indeed
abides by the DFDE AR of Example 4.1; otherwise, a DFDE AR
violation is detected.

5.2 Semantic Inferencing During DFDE AR
Enforcement

One of the benefits of representing DE and DFD rules ontologically
is the fact that we can draw upon the knowledge artefacts that
are associated with these rules in order to semantically infer new
knowledge. This potentially facilitates the enforcement of DFDE

Figure 7: CM semantic inferencing

ARs upon DE and DFD rules as now the enforcement may take
place in situations in which the knowledge artefact values that are
associated with the antecedent and consequent of a DFDEAR do not
(syntactically) match the values of the corresponding knowledge
artefacts encoded in the DE and DFD rules.

Suppose, for instance, the DFDE AR of Example 4.1 and let the
DFD rule of Table 1. The knowledge artefacts associated with the
consequent of the DFDE AR do not match, at the syntactic level, the
knowledge artefacts that are encoded in the DFD rule: the former
specifies as a location of distribution an administrative area (the
EU area), whereas the latter specifies two cities: Dublin and Frank-
furt. However, these cities do belong to EU countries and therefore
to the EU area; this information is reflected in the CM by extend-
ing the pdm:PreferredLocation concept with such concepts as
:AdminAreas, :Country and :City, as well as with the transitive
object property :isLocatedIn (see Fig. 7). Note that these con-
cepts are included in pdm:PreferredLocation during the process
of priming the CM—a process that aims at customising the CM
for the needs of a particular domain of application. Thus, when
the DFD rule of Table 1 is specified, a number of facts regarding
:o’s distribution location can be semantically inferred automati-
cally, through the use of Pellet. In particular, as depicted in Fig.
7, from the premise that a fragment of :o is associated with, and
therefore located in, Dublin we can infer that the same fragment is
also associated with, and therefore located in, Ireland and also is
associated with, and therefore located in, the EU. An entirely sym-
metrical reasoning naturally applies to the Frankfurt location. We
can thereby infer the new knowledge that the DFD rule of Table 1
distributes fragments of :o in the EU area only and therefore abibes
by the DFDE AR of Example 4.1. Clearly, such semantic inferencing
absolves developers from having to specify fine-grained axiomatic
rules that cover each permissible location of data distribution ar-
ticulated in a DFD policy. This generally facilitates the process of
formulating suitable security policies for a particular domain of
application.

6 RELATEDWORK
A number of approaches have been proposed for the semantic rep-
resentation of policies [7, 9, 12]. These generally rely on OWL [17]
for capturing the various knowledge artefacts that underpin the
definition of a policy. In [12] KaoS is presented—a generic frame-
work offering: (i) a human interface layer for the expression of

BCI’17, September 20–23, 2017, Skopje

BCI’17, September 20–23, 2017, Skopje Simeon Veloudis, Iraklis Paraskakis, and Christos Petsos

policies; (ii) a policy management layer that is capable of iden-
tifying and resolving conflicting policies; (iii) a monitoring and
enforcement layer that encodes policies in a programmatic format
suitable for enforcing them. A limitation of KaoS approach is that
the programmatic translation of policies precludes, from the outset,
the performance of any updates to the policies dynamically, i.e.
during system execution, as such updates would naturally require
that policies are re-compiled to the programmatic format.

In [7] Rei is proposed, a framework for specifying, analyzing
and reasoning about policies. Rei adopts OWL-Lite [18] for the
semantic specification of policies. A policy comprises a list of rules
that take the form of OWL properties, as well as a context that
defines the underlying policy domain. Rei provides a suitable onto-
logical abstraction for the representation of desirable behaviours
that are exhibited by autonomous entities. Rei resorts to the use
of placeholders as in rule-based programming languages for the
definition of variables. This, however, essentially prevents Rei from
exploiting the full inferencing potential of OWL as policy rules are
expressed in a formalism that is alien to OWL. In contrast, variables
could have instead been modelled in terms of OWL’s anonymous
individuals.

In [9] the authors propose POLICYTAB for facilitating trust
negotiation in Semantic Web environments. POLICYTAB adopts
ontologies for the representation of policies that guide a trust ne-
gotiation process ultimately aiming at granting, or denying, access
to sensitive Web resources. These policies essentially specify the
credentials that an entity must possess in order to carry out an ac-
tion on a sensitive resource that is under the ownership of another
entity. Nevertheless, no attempt is made to semantically model the
context associated with access requests, rendering POLICYTAB
inadequate for dynamic and heterogeneous cloud environments.

On a different note, the markup languages [3, 10, 11] provide
declarative formalisms for the specification of policies. Neverthe-
less, they do not provide any means of capturing the knowledge
that dwells in policies: they are simple data models that do not
provide any semantic agreement beyond the boundaries of the
organisations that adopted them. Any interoperability therefore
hinges necessarily upon the use of vocabularies that are shared
among the parties involved in an interaction. This leads to ad-hoc
reasoning about the abidance of policies by rules concerning their
correctness, it restricts the portability and reusability of policies,
it prohibits the identification of relations among policies (e.g. con-
tradiction, subsumption, etc.) and, finally, it restricts the ability to
generically perform rule-based policy lifecycle governance.

7 CONCLUSIONS
Axiomatic rules represent an important class or rules that restrict
the allowable values that one or more knowledge artefacts en-
coded in a security policy may assume on the basis of the values
assigned to certain other knowledge artefacts. This work has pro-
posed an approach for the representation of axiomatic rules for DE
and DFD policies as reifications of abstract ontological templates.
These templates are underpinned by the Context Model—an onto-
logical representation of the knowledge artefacts encoded in the
security policies. This enables—by virtue of semantic inferencing—
the generation of new knowledge artefacts that potentially allow the

application of axiomatic rules in situations in which the knowledge
artefacts encoded in a security policy do not syntactically match
the corresponding knowledge artefacts encoded in the axiomatic
rules.

As part of future work we intend to construct an editor that
will provide two main functionalities: firstly, it will facilitate the
expression of axiomatic rules and, secondly, it will facilitate the
formulation of security policies through the application of these
axiomatic rules. More specifically, regarding the latter functionality,
each time a knowledge artefact is embodied in a security policy,
the axiomatic rules will be applied in order to provide all allowable
values, or range of values, that this knowledge artefact may assume.

ACKNOWLEDGMENTS
The research leading to these results has received funding from
the European Union’s Horizon 2020 research and innovation pro-
gramme under grant agreement No 644814.

REFERENCES
[1] 2014. RDF 1.1 Turtle. (February 2014). https://www.w3.org/TR/turtle/.
[2] 2015. PaaSword - A Holistic Data Privacy and Security by Design Platform-as-a

Service Framework. https://www.paasword.eu. (2015).
[3] Harold Boley, Tara Athan, Adrian Paschke, Adrian Giurca, Nick Bassiliades, Guido

Governatori, Monica Palmirani, Adam Wyner, and Gen Zou. 2016. Specification
of Deliberation RuleML 1.01. (June 2016). http://wiki.ruleml.org/index.php/
Specification_of_Deliberation_RuleML_1.01.

[4] J. Callas, L. Donnerhacke, and D. Shaw. 2007. OpenPGP Message Format. https:
//tools.ietf.org/pdf/rfc4880.pdf.

[5] Clark & Parsia, LLC 2011. Pellet. Clark & Parsia, LLC. https://www.w3.org/2001/
sw/wiki/Pellet.

[6] Cloud Security Alliance 2015. What’s Hindering the Adoption of Cloud Computing
in Europe? Cloud Security Alliance. https://blog.cloudsecurityalliance.org/2015/
09/15/whats-hindering-the-adoption-of-cloud-computing-in-europe/.

[7] L. Kagal, T. Finin, and Anupam Joshi. 2003. A policy language for a pervasive
computing environment. In Proceedings POLICY 2003. IEEE 4th International
Workshop on Policies for Distributed Systems and Networks. 63–74. https://doi.org/
10.1109/POLICY.2003.1206958

[8] F Liu, J Tong, J Mao, R Bohn, J Messina, L Badger, and D Leaf. 2011. NIST Cloud
Computing Reference Architecture.

[9] Wolfgang Nejdl, Daniel Olmedilla, Marianne Winslett, and Charles C. Zhang.
2005. Ontology-Based Policy Specification and Management, Asunción Gómez-
Pérez and Jérôme Euzenat (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
290–302. https://doi.org/10.1007/11431053_20

[10] OASIS 2008. Security Assertions Markup Language (SAML) Version 2.0. Technical
Overview. OASIS. https://www.oasis-open.org/committees/download.php/27819/
sstc-saml-tech-overview-2.0-cd-02.pdf.

[11] OASIS 2013. eXtensible Access Control Markup Language (XACML) Version 3.0.
OASIS. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

[12] A Uszok, J Bradshaw, R Jeffers, M Johnson, A Tate, J Dalton, and S Aitken. 2004.
KAoS Policy Management for Semantic Web Services. IEEE Intel. Sys. 19, 4 (2004),
32–41.

[13] Simeon Veloudis and Iraklis Paraskakis. 2015. Access Policies Model. PaaSword
Project Deliverable D2.2.

[14] Simeon Veloudis and Iraklis Paraskakis. 2016. Defining anOntological Framework
forModelling Policies in Cloud Environments. In 8th IEEE International Conference
on Cloud Computing Technology and Science (CloudCom’16).

[15] Simeon Veloudis and Iraklis Paraskakis. 2016. Ontological Templates for Mod-
elling Security Policies in Cloud Environments. In Proceedings of the 20th Pan-
Hellenic Conference on Informatics (PCI ’16). ACM, New York, NY, USA, Article
65, 6 pages. https://doi.org/10.1145/3003733.3003796

[16] Yiannis Verginadis, Ioannis Patiniotakis, and Gregoris Mentzas. 2015. Context-
aware Security Model, PaaSword Project Deliverable D2.1. https://www.paasword.
eu/wp-content/uploads/2016/09/D2-1_Context-awareSecurityModel.pdf.

[17] W3C 2004. W3C Recommendation. 2004. OWL Web Ontology Language Reference.
W3C. https://www.w3.org/TR/owl-ref/.

[18] W3C 2004. W3C Recommendation. 2004. OWL Web Ontology Language
Semantics and Abstract Syntax. W3C. https://www.w3.org/TR/2004/
REC-owl-semantics-20040210/.

[19] W3C 2012.W3CRecommendation. 2012. OWL 2Web Ontology Language Document
Overview (Second Edition). W3C. https://www.w3.org/TR/owl2-overview/.

https://www.w3.org/TR/turtle/
https://www.paasword.eu
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.01
http://wiki.ruleml.org/index.php/Specification_of_Deliberation_RuleML_1.01
https://tools.ietf.org/pdf/rfc4880.pdf
https://tools.ietf.org/pdf/rfc4880.pdf
https://www.w3.org/2001/sw/wiki/Pellet
https://www.w3.org/2001/sw/wiki/Pellet
https://blog.cloudsecurityalliance.org/2015/09/15/whats-hindering-the-adoption-of-cloud-computing-in-europe/
https://blog.cloudsecurityalliance.org/2015/09/15/whats-hindering-the-adoption-of-cloud-computing-in-europe/
https://doi.org/10.1109/POLICY.2003.1206958
https://doi.org/10.1109/POLICY.2003.1206958
https://doi.org/10.1007/11431053_20
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
https://www.oasis-open.org/committees/download.php/27819/sstc-saml-tech-overview-2.0-cd-02.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://doi.org/10.1145/3003733.3003796
https://www.paasword.eu/wp-content/uploads/2016/09/D2-1_Context-awareSecurityModel.pdf
https://www.paasword.eu/wp-content/uploads/2016/09/D2-1_Context-awareSecurityModel.pdf
https://www.w3.org/TR/owl-ref/
https://www.w3.org/TR/2004/REC-owl-semantics-20040210/
https://www.w3.org/TR/2004/REC-owl-semantics-20040210/
https://www.w3.org/TR/owl2-overview/

	Abstract
	1 Introduction
	2 Representing Knowledge Artefacts
	2.1 Data Encryption Scheme
	2.2 Data Fragmentation Scheme
	2.3 Data Distribution Scheme

	3 Ontological Templates For Policy Rules
	3.1 Ontological Meta-model
	3.2 Ontological Templates for DE and DFD Rules

	4 Ontological Templates for Axiomatic Rules
	4.1 Ontological Meta-Model
	4.2 Ontological Templates for DE and DFD Axiomatic Rules

	5 Enforcing DFDE ARs
	5.1 Enforcement Process
	5.2 Semantic Inferencing During DFDE AR Enforcement

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

