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ABSTRACT
By migrating their data and operations to the cloud, enterprises
are able to gain significant benefits in terms of cost savings, in-
creased availability, agility and productivity. Yet, the shared and
on-demand nature of the cloud paradigm introduces a new breed of
security threats that generally deter stakeholders from relinquish-
ing control of their critical assets to third-party cloud providers.
One way to thwart these threats is to instill suitable access control
policies into cloud services that protect these assets. Nevertheless,
the dynamic nature of cloud environments calls for policies that
are able to incorporate a potentially complex body of contextual
knowledge. This complexity is further amplified by the interplay
that inevitably occurs between the different policies, as well as by
the dynamically-evolving nature of an organisation’s business and
security needs. We argue that one way to tame this complexity is
to devise a generic framework that facilitates the governance of
policies. This paper presents a particular aspect of such a frame-
work, namely an approach to determining the repercussions that
policy retirement actions have on the overall protection of critical
assets in the cloud.

CCS CONCEPTS
• Information systems→Ontologies; Secure online transactions;
• Security and privacy→ Software and application security;
• Applied computing → IT governance; • Computer systems
organization→ Cloud computing;
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1 INTRODUCTION
It is generally conceded that, by migrating their data and opera-
tions to the cloud, enterprises and organisations are able to gain
significant benefits in terms of cost savings, increased data avail-
ability, greater business agility and productivity [2]. Nevertheless,
despite the benefits, the shared and on-demand nature of the cloud
paradigm introduces a new breed of security threats that generally
deter stakeholders from relinquishing control of critical corporate
assets to third-party cloud providers [2, 3].

In order to thwart these threats, adequate access control policies
that convey an organisation’s business logic and overall stance
towards security, must be devised and infused into the applications
through which critical assets are accessed in the cloud [14]. Never-
theless, the inherently dynamic and heterogeneous nature of cloud
environments calls for policies that are able to incorporate a poten-
tially complex body of contextual knowledge [15]. As an example,
consider a policy that incorporates the following rules for specify-
ing the contextual conditions under which an entity s is granted,
or denied, write access to a sensitive data object o: s is permitted
to write to o when s resides in the geographical area identified as
bldдX ; s is denied to write to o when s resides in the area identified
as bldдY , or in the network location identified as 144.0.0.0/8; s is
denied to write to o when the request is issued during a prescribed
time interval. This complexity is further amplified by the interplay
that inevitably occurs between the different policies, and the rules
thereof, that an organisation collectively employs in order to pro-
tect its sensitive assets—an interplay that potentially affects the
effectiveness of the policies by influencing the manner in which they
permit, or deny, access requests. The situation is further perplexed
by the dynamically-evolving nature of an organisation’s business
and security needs that often necessitates changes in the policies,
such as the introduction of new policies and/or the retirement of
existing ones.

We argue that, in order to tame this complexity, hence increase
assurance on the effectiveness of the policies, a generic framework
that is capable of facilitating the overall governance of policies is
required. Our work, conducted as part of the PaaSword project
[1], offers such a framework. In particular, it aspires to provide
a governance mechanism that is underpinned by an ontological
representation of policies that semantically describes the various
knowledge artefacts that are incorporated in the policies. In this
respect, it promotes a clear separation of concerns by disentangling



the definition of policies from the code of the applications into
which they are infused. This enables the provision of the following
seminal capabilities in a generic and automated manner: (i) rea-
soning about the correctness of the policies, by constraining the
knowledge artefacts that must, may, or may not be embodied in
the policies; (ii) determining potential inter-policy relations, such as
subsumption and contradiction; (iii) determining the repercussions
of policy lifecycle actions, such as policy updates and retirements,
on the ability of the policies to protect critical assets.

This paper focuses on the third capability. More specifically, it
proposes an XACML-based [9] approach that is capable of deter-
mining, in an automated manner, how retirement actions targeted at
the rules comprised by access control policies, influence the manner
in which such policies permit, or deny, access to sensitive assets. To
achieve this, our approach semantically captures the interplay that
occurs between the rules of a policy for arriving at a decision for a
particular access request; on that basis, it then proposes a semantic
characterisation of all those requests that are affected by the re-
tirement of a rule, i.e. it ontologically describes—in OWL [18]—the
knowledge artefacts that characterise these requests. Evidently, such
a semantic characterisation increases awareness among stakehold-
ers about the repercussions of rule retirement actions.

One of the main benefits of our approach is that it enables—
by virtue of semantic inferencing—reasoning about the effects of
rule retirement even in cases in which the knowledge artefacts
conveyed by a request do not match, at the syntactic level, the
corresponding knowledge artefacts that characterise the affected
requests. Assume, for instance, that a particular retirement action
is determined to affect all requests that are issued from within
the location identified as bldдX ; semantic inferencing allows us to
conclude that any request originating from, say, a particular room
of bldдX , is also affected.

The rest of this paper is structured as follows. Section 2 pro-
poses an ontological representation of our XACML-based model
for policies; it also proposes an ontological representation of access
requests. Section 3 specifies the conditions under which a rule com-
prised by a policy is enforceable upon an access request. Section 4
investigates the repercussions that the retirement of such a rule has
by providing a semantic characterisation of all those access requests
that are affected by the retirement. Section 5 presents a simple ex-
ample that demonstrates the applicability of our approach. Finally,
Section 6 presents related work and Section 7 outlines conclusions
and future work.

2 ACCESS CONTROL POLICIES AND
REQUESTS

Attribute-based Access Control (ABAC) policies [5], due to their
inherent reliance on the generic concept of an attribute, are partic-
ularly suitable for capturing the contextual knowledge that char-
acterises access requests [14]. This section presents a declarative
model for the representation of ABAC policies—a model that forms
the basis of our approach for determining the repercussions of re-
tirement actions. More specifically, Sections 2.1 and 2.2 present,
respectively, an informal account and an ontological representation
of the model, and Section 2.3 outlines an ontological expression for
access requests.

Figure 1: Simplified view of the CM

2.1 ABAC Policy Model
According to the XACML standard [9], an ABAC policy consists
of one or more ABAC rules that convey its core logic. Each rule
comprises an antecedent and a consequent. The latter captures the
decision with which the rule responds to an access request which
invariably resolves to either a ‘permit’ or a ‘deny’. The former artic-
ulates, the rule’s ‘target’, i.e. a (pre-)condition that must be satisfied
in order for the rule to be enforceable upon an access request. In
particular, it incorporates a set of knowledge artefacts—its so-called
attributes—whose values need to be taken into account when de-
ciding whether to permit, or deny, a request. These attributes are
drawn from an underlying Context Model (CM)—an extensible on-
tological framework that includes interrelated concepts suitable
for capturing attributes and the properties thereof. A simplified
view of the CM that is used in this work, one which includes only
concepts and properties considered in this paper, is depicted in Fig.
1 (for more details the interested reader is referred to [16, 17]).

An ABAC policy is also associated with a rule-combining algo-
rithm [9] that determines which of its rules (if any) is to be enforced
upon an access request. For each access request, an ABAC policy
resolves to at most one of its rules; a policy that does not resolve
to any of its rules for a particular request is considered ‘Not Ap-
plicable’ for that request. ABAC policies may also be bundled into
ABAC policy sets which may recursively include other policy sets
as well. Each ABAC policy set is associated with a policy-combining
algorithm [9] that determines which of its elements—either a policy
or a nested policy set—is to be enforced upon an access request.
For each access request, an ABAC policy set resolves to at most
one of its elements; a policy set that does not resolve to any of its
elements for a particular request is considered ‘Not Applicable’ for
that request.

2.2 Ontological Representation of ABAC
Policies

Our ontological representation of the ABAC policy model is de-
picted in Fig. 2. At the core of this representation lie the con-
cepts: Policy, Rule , PolicySet and CombininдAlд; as we would ex-
pect, instances of these concepts represent, respectively, policies,
rules, policy sets and combining algorithms (both rule- and policy-
combining ones). Policies and policy sets are associated with their
corresponding combining algorithms through the functional prop-
erty hasCombAlд. Similarly, rules are associated with their an-
tecedents and consequents through the functional propertieshasAnt
and hasCons respectively; the consequent of a rule invariably re-
solves to exactly one of the individuals1 permit or deny.

1The terms ‘instance’ and ‘individual’ are used interchangeably.



Figure 2: ABAC model

In addition, our ontological representation also includes the con-
ceptsOrderedRule andOrderedElement (see Fig. 2). These capture
the order that is imposed upon the rules of a policy, or upon the
elements of a policy set; they also capture the precedence with
which these rules, or elements, are enforced upon an access re-
quest. More specifically, each instance of the concept OrderedRule
is associated, via the property hasRule , with exactly one rule; simi-
larly, each instance of the concept OrderedElement is associated,
via one of the propertes hasPolicy or hasPolicySet , with exactly
one element of a policy set—i.e. with either a particular policy or
with a particular (nested) policy set. In addition, each instance of
the concept OrderedRule is associated, via each of the properties
hasOrder and hasPrecedence , with exactly one non-negative inte-
ger that represents that rule’s order and precedence respectively
in a containing policy. The same properties are used for assigning
order and precedence to the elements of a policy set. ABAC policies
are associated with their constituent ordered rules through the
property hasOrderedRule (see Fig. 2), and ordered ABAC policies,
or ordered (nested) ABAC policy sets, are associated with their
encompassing policy set(s) through the property hasSet . The on-
tological model outlined above is formally articulated in terms of
terminological (TBox) and assertional (ABox) axioms expressed in
the SROIQ Description Logic (DL) [4]; the interested reader is
referred to [12] for a relevant account.

Now the antecedent of an ABAC rule, as already mentioned,
comprises attributes whose values need to be taken into account
when deciding whether to permit, or deny, an access request. Below
we outline a set of restrictions regarding these attributes. The first
restriction demands that the antecedent of an ABAC rule invariably
includes exactly one protected asset; formally, this is expressed by
articulating that each instance of the concept Antecedent is associ-
ated, through the object property hasObj , with exactly one instance
of the class Object of the CM (see Fig. 2). The second restriction
demands that the antecedent of an ABAC rule invariably features
exactly one association, via the propertyhasAct , with an action from

the class Action, i.e. with an action that is to be performed on the
protected asset2. The third restriction demands that the antecedent
of an ABAC rule invariably features exactly one association, via
the property hasSubj, with at least one entity requesting access to
the protected asset, i.e. with at least one instance of the CM class
Subject . Finally, the fourth restriction requires that the antecedent
of an ABAC rule refers, through the property hasCE, to at most one
context expression—i.e. to at most one expression that constrains the
values of the contextual attributes that pertain to an access request.
Context expressions are ontologically represented as instances of
the class ContextExpr and are further elaborated below.

A context expression (CE) is a propositional logic expression that
articulates the contextual conditions that must be satisfied in order
for a rule to be enforceable upon a request. These conditions may
refer to the subject and/or object of a request, or to the request itself.
The various attributes that are bound by a CE, i.e. its parameters,
take the form of instances of one or more concepts that are included
in the ContextAttributes concept of the CM (see Fig. 1), and may
be combined through the usual propositional logic connectives. A
CE is associated with its parameters through the object property
hasParam, whilst it may be defined recursively, in terms of one or
more other CEs. A CE is associated with the entity that it refers to
through the object property re f ersTo. As an example, consider a
CE identified by the individual e that articulates that the subject
s resides either in the physical location identified as bldдY , or in
the network location identified by 144.0.0.0/8. Formally, such a CE
is expressed by asserting that e is an instance of the abstract OWL
class that comprises all those individuals that have some associa-
tion with the individual bldдY , or with the individual 144.0.0.0/8,
through the property hasParam, and also some association through
the property re f ersTowith the individual s ; assertion 1 of Appendix
A provides a formal representation (in SROIQ) of such a CE.

2.3 Ontological Representation of Access
Requests

Closely akin to the antecedent of an ABAC rule, an access request
may include attributes that specify: the protected asset that it tar-
gets (i.e. its ‘object’); the action that it aspires to carry out on that
object; the entity that issues the request (i.e. its ‘subject’); the CE
that articulates the contextual circumstances under which the re-
quest is issued. Ontologically, an access request is expressed as
an instance of a concept named Request , whilst it is associated
with its attributes through the same properties used for interrelat-
ing ABAC rule antecedents with their attributes, namely: hasObj,
hasAct , hasSubj and hasCE. Note that, in contrast to the case of
ABAC rule antecedents, we avoid articulating here any restrictions
concerning the attributes of an access request. The reason for this
is that access requests, as opposed to ABAC rules, are externally-
generated artefacts whose structure cannot be prescribed.

3 DETERMINING ENFORCEABILITY OF
ABAC RULES

Reasoning about the enforceability of an ABAC rule upon an access
request is an integral part of our approach for determining the

2The class Action also forms part of the CM too but it is not depicted in Fig. 1.



Figure 3: Inferencing at the CM

repercussions of policy retirement actions. This section outlines
how such reasoning is performed.

An ABAC rule r is deemed enforceable upon an access request
q iff q entails r ’s antecedent, i.e. iff r ’s antecedent is semantically
inferable from q. As an example, let r ’s antecedent feature exactly
one association, through the properties hasObj, hasAct , hasSubj
and hasCE, with the individuals o,w , s and e respectively, where e
represents the CE of assertion 1. Also, let q be associated, through
the same properties, with the individuals o,w , s and e ′ respectively.
e ′ represents a CE that expresses the fact that s resides in, say, room
101 ofbldдY . r is enforceable onq as: (i)q is associated with the indi-
viduals o,w , s as demanded by r ; (ii) e ′ entails e—an entailment that
is based upon semantic inferencing that generates the knowledge
that room 101 indeed resides in bldдY . It follows that, reasoning
about the enforceability of a rule upon an access request may entail
semantic inferencing in the CM. Nevertheless, for such inferencing
to be possible, certain knowledge artefacts must be embodied in the
CM. For instance, in the example above, the concept PhyLocation
needs to include such concepts as Buildinд, Floor and Room, along
with their appropriate instances (see Fig. 3); it also needs to include
the transitive property isLocatedIn that interrelates these instances.
It is to be noted here that these artefacts are encoded into the CM
during a priming process that is undertaken by stakeholders for
customising the CM for their particular purposes.

We outline now our approach to reasoning about the enforce-
ability of a rule r upon an access request q. Initially, we program-
matically construct an abstract OWL class that comprises all those
individuals that could, potentially, play the role of r ’s antecedent.
This class, say Ar , includes all those individuals that are related,
through the appropriate properties, with certain attribute instances
from the CM. For instance, assertion 2 of Appendix B provides a
formal representation of Ar for the example rule r outlined in the
previous paragraph. Subsequently, the same process is followed in
order to construct an abstract class, say Rq , that groups together all
those individuals that may potentially play the role of the request
q. The rule r is enforceable upon q iff Rq is a subclass of Ar , i.e. iff
Rq ⊑ Ar . The validity of this relation is assessed through the use
of the Pellet reasoner [10].

4 DETERMINING THE REPERCUSSIONS OF
RULE RETIREMENT ACTIONS

We are now ready to present our approach to determining the
repercussions of policy retirement actions. Two kinds of retirement
actions are discerned: those that are targeted to the rules of an
ABAC policy, and those that are targeted to the elements (either
policies or nested policy sets) of an ABAC policy set. Although
our approach is capable of determining the repercussion of both

kinds of retirement actions, for reasons of space in this paper we
exclusively focus on the former kind of actions.

Let p be an ABAC policy and Sp its corresponding ruleset. In
order to determine the repercussions that result from the removal of
a rule from Sp , we first need to determine how p actually resolves to
one of its rules when responding to an access request. This requires
consideration of the relevant precedence that the rules in Sp enjoy.
For any two rules r1, r2 ∈ Sp , we say that r2 has a precedence
greater or equal than the precedence of r1, denoted r1 ≤p r2, iff the
precedence value associated with r1 in p (see Section 2.2) is less or
equal than the precedence value associated with r2 in p. Precedence
values are assigned to rules on the basis of the rule-combining
algorithm associated with p; a relevant outline is in order.

4.1 Rule-Combining Algorithms
In [9], the following rule-combining algorithms are reported: ‘deny
overrides’ (DO), ‘permit overrides’ (PO)3 and ‘first applicable’ (FA).
The DO algorithm imposes the following precedence on Sp : (i) all
‘deny’ rules (if any) are of equal precedence; (ii) all ‘permit’ rules (if
any) are of equal precedence; (iii) each ‘deny’ rule takes precedence
over each ‘permit’ rule. An entirely symmetrical precedence is
imposed on Sp by the PO algorithm. The case of the FA algorithm
is quite different as it imposes a precedence that is detached from
the decisions entailed by the rules: instead, it coincides with the
order imposed on Sp by p’s creator through the hasOrder property
(see Section 2.2).

4.2 Access Control Decisions at the Policy Level
We turn now our attention to the conditions that must be satisfied
in order for p to yield the decision v ::= permit |deny in response
to a request q. First of all, there must exist at least one rule in Sp
which is associated with the decision v; formally, the set Sp,v =
{r ∈ Sp |Cr ≡ {v}} must be non-empty, where Cr is the class
that represents r ’s decision. Secondly, at least one of the rules in
Sp,v must be enforceable on q, i.e. the abstract class Rq must be a
subclass of at least one of the abstract classes Ar where r ∈ Sp,v ;
formally: Rq ⊑

⊔
r ∈Sp,v Ar . Thirdly, there must exist at least one

enforceable rule r ′ in Sp,v such that none of the rules that have
a precedence greater or equal than that of r , and which yield a
decision opposite than r ’s, is enforceable on q; formally, the set
Hp,v,r = {r ′ ∈ Sp |Cr ≡ {v̄} ∧ r ≤p r ′}, where v̄ ::= permit |deny
and v̄ , v , must comprise rules that are not enforceable on q as
otherwise one of these rules would be enforced on q (instead of r )
yielding a decision different than v . It follows that the class of all
requests for which p yields the decision v , denoted Rp,v , takes the
form of assertion 3 provided in Appendix D.1.

4.3 Removing Rules
We are now ready to determine the repercussions resulting from
the removal of a rule r from Sp . In particular, we are interested in
semantically characterising all those requests that are responded
to with a certain decision v ::= permit |deny, as long as r remains
in Sp , and which are considered ‘Not Applicable’, or are responded
to with the opposite decision v̄ , when r is removed from Sp .
3In [9], ordered versions of these algorithms are also reported – refer to Appendix C
for a justification regarding why these ordered versions do not concern us here.



Figure 4: A v-inducing request turned into a v̄-inducing one

4.3.1 v-Inducing Requests Turned Into ‘Not Applicable’-Inducing
Requests. The class, call itRNA

p,r , of requests that induce the response
v , as long as r remains in Sp , and the response ‘Not Applicable’,
when r is removed from Sp , comprises all those requests upon
which r , but no other rule from Sp , is enforceable; assertion 4 of
Appendix D.1 provides a formal expression for RNA

p,r .

4.3.2 v-Inducing Requests Turned Into v̄-Inducing Requests. Let
Sp comprise the rules depicted in Fig. 4 and let r3 be the rule under
removal. For a request q to induce the response deny prior to the
removal of r3, and the response permit after the removal of r3,
the following conditions must conjunctively hold. Firstly, r3 must
be enforceable on q. Secondly, no rule with a precedence greater
than that of r3 must be enforceable on q. This is because, if one or
more such rule is indeed enforceable on q, then one of them will
be ultimately enforced on q and thus p will yield the same decision
for q both prior, and after, the removal of r3. That is, if either of
r1, r2 of Fig. 4 is enforceable on q, p will respond to q with either
r1’s or r2’s decision, irrespective of whether r3 is removed from Sp .
Thirdly, at least one rule r ′ with a precedence less or equal than
that of r3, and a decision different than that of r3 (i.e. rule r4 of
Fig. 4), must be enforceable on q. This is because if no such rule
exists, i.e. if all rules with a precedence less than or equal to that of
r3 entail the same decision as r3 (i.e. deny) then, after the removal
of r3, p cannot respond to q with the decision permit . In addition,
any rules that have a precedence greater than that of r ′, but less
or equal than that of r3, and which are associated with the same
decision as r3 should not be enforceable on q for otherwise, one of
these rules, and not r ′, will be enforced on q. For instance, if in Fig.
4 there were a rule r ′′ which entailed the same deny decision as
r3 and had a precedence between that of r3 and r4, then that rule
would be enforced on q after the removal of r3, preventing r4 from
yielding a decision opposite than that of r3.

Generalising, the class Rv̄p,r of all requests that induce the re-
sponse v for as long as r remains in Sp , and the opposite response
v̄ , when r is removed from Sp , comprises all those requests q such
that: (i) r is enforceable on q. (ii) No rule in Sp with a precedence
higher than that of r , i.e. no rule from the setUp,r = {r ′ ∈ Sp |r

′ <p
r }, is enforceable on q. (iii) At least one rule r ′ which is associ-
ated with the decision v̄ and has a precedence less or equal than
that of r , is enforceable on q, i.e. at least one rule from the set
Dp,v,r = {r ′ ∈ Sp |r

′ ≤p r ∧ Cr ′ ≡ {v̄}} is enforceable on q. In
addition, no other rule r ′′ which is associated with the same deci-
sion v as r and has a precedence higher than that of r ′, but less or
equal than that of r , is enforceable upon q, i.e. no rule from the set

Bp,v,r = {r ′′ ∈ Sp |r
′ <p r ′′ ≤p r ∧Cr ′ ≡ {v}} is enforceable on q.

Assertion 5 of Appendix D.1 provides a formal expression for Rv̄p,r .

4.3.3 Unaffected Requests. In an analogous manner, we discern
the class Rvp,r of all requests that are unaffected by the removal of r
from Sp , i.e. they induce the same response v both prior, and after,
the removal of r . More specifically,Rvp,r comprises all those requests
q such that either: (i) one or more rule with a precedence greater
than that of r , i.e. one or more rule from the set Up,r (see above),
is enforceable on q; or (ii) one or more rule with a precedence less
or equal than that of r , but not r itself, is enforceable on q, i.e. one
or more rule from the set Lp,v,r = {r ′ ∈ Sp |r

′ ≤p r } is enforceable
on q; or (iii) r and one or more rule r ′ with a precedence less or
equal than that of r and the same decision v as r ’s, is enforceable
on q—i.e. one or more rule from the set D ′

p,v,r = {r ′ ∈ Sp |r
′ ≤p

r ∧Cr ′ ≡ {v}} is enforceable on q; at the same time, no rule that
bears the opposite decision v̄ and has a precedence greater than
that of r ′, but less or equal than that of r , is enforceable on q—i.e.
no rule from the set Bp,v,r = {r ′′ ∈ Sp |r

′ <p r ′′ ≤p r ∧Cr ′ ≡ {v̄}}
is enforceable on q. Assertion 6 of Appendix D.1 provides a formal
expression for Rvp,r .

5 A SIMPLE EXAMPLE
Consider the ruleset of Fig. 4 and let the antecedent of each rule ri
(i ∈ [1 . . . 4]) enjoy exactly one association, through the properties
hasObj , hasAct , hasSubj and hasCE, with the individuals o,w , s and
ei respectively (see Fig. 5). e1 represents a CE that demands that the
physical location of the subject s of a request is identified by the
individual bldдY (see Fig. 5); e2 represents a CE that demands that
the network location from which s issues a request is the subnet
144.0.0.0/8; e3 represents a CE that demands that a request is issued
during the interval identified by the individual nonWH (stands for
‘non working hours’); finally, e4 represents a CE that demands that
the physical location of s is identified by the individual bldдX .

Suppose now that rule r3 is removed from Sp . According to as-
sertion 4 of Appendix D.1, the class RNA

p,r3 of all requests that induce
a deny decision prior to the removal of r3, and a ‘Not Applicable’
decision after the removal of r3, is formally expressed by asser-
tion 7 of Appendix D.2. RNA

p,r3 essentially includes all requests that
bear the following characteristics: (i) they enjoy exactly one asso-
ciation, through the properties hasObj, hasAct and hasSubj with
the individuals o,w and s respectively; (ii) they enjoy exactly one
association with a CE that articulates that the request is issued
during the interval nonWH ; (iii) they do not enjoy any associations
with any CEs that articulate that s resides in any of the physical
locations bldдX or bldдY , or in the network location 144.0.0.0/8.

We now turn our attention to the class Rpermit
p,r3 of requests that

induce a deny decision prior to the removal of r3, and a permit
decision after the removal of r3. According to assertion 5, this class
is given by assertion 8 of Appendix D.2 as it essentially includes
all requests that bear the following characteristics: (i) they enjoy
exactly one association, through the properties hasObj , hasAct and
hasSubj with the individuals o,w and s respectively; (ii) they do not
enjoy any associations with any CEs that articulate that s resides
either in the physical location bldдY or in the network location
144.0.0.0/8; (iii) they enjoy exactly one association with a CE that



Figure 5: Example rules

articulates that the request is issued during the interval nonWH ;
(iv) they enjoy exactly one association with a CE that articulates
that s resides in the physical location bldдX .

Finally, the class Rvp,r3 of all requests that remain unaffected from
the removal of r3 (i.e. they continue to invoke the same response
v both prior and after the removal of r3) is given, according to as-
sertion 6, by assertion 9 of Appendix D.2. Rvp,r3 essentially includes
all requests that bear the following characteristics: (i) they enjoy
exactly one association, through the properties hasObj , hasAct and
hasSubj with the individuals o, w and s respectively; (ii) they ei-
ther enjoy exactly one association with a CE that articulates that
s resides in bldдY or in 144.0.0.0/8, or they enjoy exactly one as-
sociation with a CE that articulates that s resides in bldдX but do
not enjoy any associations with any CEs that articulate that the
request is issued during the interval nonWH .

6 RELATEDWORK
A number of approaches have been proposed for semantically rep-
resenting policies [6, 8, 11]. These generally rely on OWL [18] for
capturing the knowledge artefacts that dwell in policies. In [11]
KaoS is presented—a framework providing: a human interface layer
for the expression of policies, a policy management layer for the
manipulation of policies, and a monitoring and enforcement layer
that encodes policies in a programmatic format suitable for their
enforcement. Nevertheless, KaoS’s mechanism for policy manage-
ment is mainly oriented towards resolving conflicting policies and
does not provide any determination of the repercussions of policy
retirement actions.

In [6] Rei is proposed. Rei provides a framework for specify-
ing, analysing and reasoning about policies. Similar to our work,
a policy comprises a set of rules and it is also associated with an
underlying context that defines its domain of application. Neverthe-
less, unlike our work, Rei resorts to the use of constructs adopted
from rule-based programming languages for defining and reasoning
about policy rules. In particular, it resorts to the use of placeholders
for the definition of variables which are required for expressing
rule attributes whose values are defined relative to the values of
other rule attributes. This, however, essentially prevents Rei from
exploiting the full inferencing potential of OWL as policy rules are

modelled in a formalism that is alien to OWL. In addition, Rei does
not provide any mechanism for determining the repercussions of
policy retirement actions.

In [8] the authors propose POLICYTAB: a framework designed
to facilitate trust negotiation in Semantic Web environments. POL-
ICYTAB adopts an ontological approach to the representation of
policies that guide a trust negotiation process that aims at granting,
or denying, requests to act upon sensitive Web resources. These
policies essentially articulate the credentials that an entity must
possess in order to carry out a certain action on a sensitive re-
source that is under the ownership of another entity. Nevertheless,
no attempt is made to semantically model the context associated
with access requests; in addition, no mechanism is provided for
determining the repercussions of policy retirement actions.

The work reported in [7] presents a formalisation of XACML
using DLs which allows the use of off-the-shelf reasoners for sup-
porting a wide range of policy-related actions such as comparisons
between policies, policy verification and policy querying. Similar
to our work, these actions are underpinned by a semantic char-
acterisation of access requests. Nevertheless, unlike our work, no
underlying ontological model for rules, policies and policy sets is
provided thus precluding any explicit modelling of the precedence
imposed by combining algorithms. To overcome this limitation, the
authors resort to the use of Defeasible DLs (DDLs) for capturing
precedence implicitly. This, however, incurs the overhead of reduc-
ing provability in DDLs to concept satisfiability in OWL and also,
as the authors concede, hinders the expression of certain combining
algorithms. In addition, it fails to model the potentially complex
contextual knowledge attached to rules and thus precludes from
the outset any context-based semantic inferencing that may be
required in dynamic cloud environments. Last but not least, it fails
to provide any mechanisms for determining the repercussions of
policy retirement actions.

7 CONCLUSIONS
We have presented an approach to determining the repercussions
of retirement actions targeted at the rules comprised by access
control policies in dynamic cloud environments. The determination
is based on a semantic characterisation of all those access requests
that are affected by the retirement of one or more policy rules, and
it is performed automatically, through semantic inferencing that
is carried out by off-the-shelf reasoners. We are currently in the
process of developing a mechanism that implements this approach.

As part of future work, we intend to incorporate this mechanism
in an editor (that is currently also under development) that aims
at facilitating the governance of ABAC policies. This way, each
time stakeholders issue retirement actions, the editor will be able
to inform them about the repercussions of their actions and hence
assist them in governing effectively their policies.
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A FORMAL REPRESENTATION OF A
CONTEXT EXPRESSION

{e} ⊑(≤ 1 re f ersTo.{s}) ⊓ ((≤ 1 hasParam.{bldдY })

⊔ (≤ 1 hasParam.{144.0.0.0/8}))
(1)

Note that, for any object property P and concept C , (≤ 1P .C) rep-
resents the abstract class that comprises all those individuals that
have at least one association through P with an instance of C . The
symbols ⊔ and ⊓ represent, respectively, class union and intersec-
tion. Also note that all concepts and properties of the ABAC policy
model belong to the pac namespace (stands for PaaSword Access
Control) [13]; in order to avoid notational clutter, in this work we
omit the pac prefix from concept and property identifiers.

B FORMAL REPRESENTATION OF A RULE
ANTECEDENT

Ar ≡((= 1 hasObj .{o}) ⊓ (= 1 hasSubj .{s})⊓

(= 1 hasAct .{w}) ⊓ (= 1 hasCE.C)
(2)

Example abstract class that represents (in SROIQ) the antecedent
of a rule r . Note that, for any object property P and concept C ,
(= 1P .C) represents the abstract class that comprises all those
individuals that feature exactly one association through P with
an instance of C; it is an abbreviation for the SROIQ notation
(≤ 1 P .C) ⊓ (≥ 1 P .C).

C ORDERED DO AND PO ALGORITHMS
The ordered versions of the DO and PO algorithms invariably drive
a policy to respond to an access request with exactly the same de-
cision as their unordered counterparts. It follows that the ordered
and unordered versions of the DO and PO algorithms are indistin-
guishable when determining the repercussions of rule removals.
This is because, as already discussed, these repercussions are de-
termined on the basis of the manner in which access requests are
responded to by a policy. The ordered versions of the DO and PO
algorithms will therefore not further concern us in this paper.In
addition, the following variations of the DO and PO algorithms are
often encountered in practice: ‘permit unless deny’ and ‘deny unless
permit’. The former algorithm (meaning that p yields by default a
‘permit’ decision unless one of its ‘deny’ rules, if any, is enforced)
becomes equivalent to the DO algorithm through the inclusion in
Sp of a special ‘permit’ rule that has OWL’s universal class as its
antecedent (and thus is enforceable upon any access request, re-
gardless of the attributes piggybacked on that request); an entirely
symmetrical treatment applies to the latter algorithm.

D FORMAL REPRESENTATION OF
ABSTRACT CLASSES

D.1 Abstract Classes of Section 4
The class of all requests for which p yields the decision v :

Rp,v ≡
⊔

r ∈Sp,v

(Ar ⊓ ¬(
⊔

r ′∈Hp,v,r

Ar ′)) (3)

The class of all requests that induce v prior to the removal of r , and
’Not Applicable’ after the removal of r :

RNA
p,r ≡ Ar ⊓ ¬

⊔
{r ′∈Sp |r ′,r }

Ar ′ (4)

The class of all requests that induce v prior to the removal of r , and
v̄ after the removal of r :

Rv̄p,r ≡Ar ⊓ (¬
⊔

r ′∈Up,r

Ar ′)⊓

(
⊔

r ′∈Dp,v,r

Ar ′ ⊓ (¬
⊔

r ′′∈Bp,v,r

Ar ′′))
(5)

The class of all unaffected requests that induce v both prior and
after the removal of r :

Rvp,r ≡(
⊔

r ′∈Up,r

Ar ′) ⊔ (¬Ar ⊓
⊔

r ′∈Lp,v,r

Ar ′)⊔

(Ar ⊓ (
⊔

r ′∈D′
p,v,r

Ar ′ ⊓ (¬
⊔

r ′′∈B′
p,v,r

Ar ′′)))
(6)

D.2 Abstract Classes of Section 5
RNA
p,r3 ≡C⊓

(= 1 hasCE.{e1} ⊓ ¬(
⊔

i ∈{1,2,4}
hasCE.{ei }))

(7)

whereC ≡ (= 1 hasObj .{o})⊓(= 1 hasAct .{w})⊓(= 1 hasSubj .{s}).
It is to be noted here that assertion 7, as well as assertions 8 and 9
below, have been mathematically derived from the (considerably
more complex) SROIQ expressions that result from the initial
application of assertions 4–6 to the rule antecedents of Fig. 5; the
mathematical derivation is based on the associativity and distribu-
tivity properties of the ⊓ and ⊔ operators and it is omitted here for
reasons of space as it is inconsequential to the rest of the work.

R
permit
p,r3 ≡C ⊓ ¬(

⊔
i ∈{1,2}

hasCE.{ei })⊓

(= 1 hasCE.{e3}) ⊓ (= 1 hasCE.{e4})

(8)

Rvp,r3 ≡C ⊓ ((
⊔

i ∈{1,2}
hasCE.{ei })⊔

(¬(= 1 hasCE.{e3}) ⊓ (= 1 hasCE.{e4})))

(9)
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