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ABSTRACT
The cloud computing paradigm enables enterprises to realise sig-
nificant cost savings whilst boosting their agility and productivity.
However, security and privacy concerns generally deter enterprises
from migrating their critical data to the cloud. One way to alleviate
these concerns, hence bolster the adoption of cloud computing,
is to devise adequate security policies that control the manner in
which these data are stored and accessed in the cloud. Nevertheless,
for enterprises to entrust these policies, a framework capable of
providing assurances about their correctness is required. This work
proposes such a framework. In particular, it proposes an approach
that enables enterprises to define their own view of what consti-
tutes a correct policy through the formulation of an appropriate
set of well-formedness constraints. These constraints are expressed
ontologically thus enabling—by virtue of semantic inferencing—
automated reasoning about their satisfaction by the policies.

CCS CONCEPTS
• Information systems→Ontologies; Secure online transactions;
• Security and privacy→ Software and application security;
• Applied computing → IT governance; • Computer systems
organization→ Cloud computing;
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1 INTRODUCTION
By enabling access to shared pools of virtualised resources, cloud
computing signifies a shift towards service-based architectures that
offer, theoretically, a boundless scalability and a flexible pay-per-
use model [7]. Such a shift brings about significant advantages for
users in terms of cost, flexibility and business agility. In particular,
it enables inherently heterogeneous stakeholders, ranging from
small and medium enterprises (SMEs) to large retailers and health
care providers, to realise significant cost savings by delegating
the storage and processing of their data to servers that are under
the control of third-party cloud providers. However, relinquishing
control of—oftentimes critical—corporate data naturally raises sig-
nificant security and privacy concerns that may deter stakeholders
from embracing the cloud paradigm [4].

One way to alleviate these concerns, hence bolster the adoption
of cloud computing, is to infuse adequate security policies into the
applications through which sensitive data are stored and accessed
in the cloud [14]. For example, policies may be required that artic-
ulate adequate data fragmentation and distribution schemes that
control the manner in which critical data are partitioned and dis-
tributed over distinct cloud servers for privacy reasons. Consider,
for instance, a relational database table t holding sensitive customer
information. A policy may be required whereby t is fragmented
such that customer credit card numbers and customer names are
always stored on separate servers that are administered by distinct
cloud providers.

We argue that, for stakeholders to entrust such policies with
the protection of their critical data, a framework that provides
assurances about the correctness of the policies is required. The
work conducted as part of the PaaSword project [2] offers such a
framework. In particular, PaaSword provides a security-by-design
solution—essentially a PaaS offering—that facilitates the governance
of security policies. To this end, it draws upon a semantic repre-
sentation of policies, one that ontologically captures the various
knowledge artefacts that are encoded in the policies. Such a repre-
sentation unravels the expression of policies from the code of the
applications in which they are infused; in this respect, it lends itself
to automated reasoning about the correctness of the policies.

This paper proposes an approach to such reasoning, one that
is based upon a class of ontologically-expressed constraints, the
so-called well-formedness constraints. Well-formedness constraints
articulate all those knowledge artefacts, and the values thereof, that
must, may or must not be embodied in a security policy. In this
respect, they give rise to a set of ontological templates against which
the correctness of security policies can be judged. For instance,
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going back to the example above, a well-formedness constraint
may insist that any data fragmentation and distribution policy
concerning the relational table t must demand that t’s fragments
are invariably persisted across servers that reside in the EU only;
any data fragmentation and distribution policy not embodying such
a location of distribution is assumed to be not well-formed and thus
incorrect.

Evidently, well-formedness constraints empower stakeholders to
harness the knowledge artefacts embodied in the security policies
that protect their sensitive data. In other words, they empower
stakeholders to instill into these policies their business logic and
overall stance towards security. In this respect, well-formedness
constraints compel the developers of the applications through
which these data are stored and accessed to devise, and subse-
quently infuse into these applications, security policies that are
adequate for the stakeholders’ needs.

One of the main strengths of modelling well-formedness con-
straints ontologically, using OWL [16], is that it enables new knowl-
edge artefacts to be semantically inferred from existing ones. This
potentially allows the application of well-formedness constraints
in situations in which the knowledge artefacts encoded in a policy
do not necessarily match, at the syntactic level, the correspond-
ing artefacts encoded in the constraints. For instance, returning
to the example above, a security policy that states that the table
t must be fragmented and distributed over servers that reside in,
say, the Dublin area, is deemed to abide by the aforementioned
well-formedness constraint as semantic inferencing allows us to
determine that this area is indeed located in the EU. This clearly
absolves stakeholders from having to specify fine-grained well-
formedness constraints—i.e. constraints that cover each permissible
location of data distribution that may be specified in a policy.

Although well-formedness constraints are applicable to a wide
range of policies, here we confine ourselves to two particular kinds
of policy encountered in the PaaSword project, namely: (i) Data
Encryption (DE) policies that articulate the kind of cryptographic
protection that a sensitive data object must enjoy in the cloud; (ii)
Data Fragmentation and Distribution (DFD) policies that specify
the manner in which sensitive data objects are fragmented and
distributed across cloud servers.

The rest of this paper is structured as follows. Section 2 outlines
an ontological framework for the representation of the knowledge
artefacts that are encoded in DE and DFD policies. Section 3 draws
upon this framework and presents a set of well-formedness con-
strains for DE and DFD policies. Section 4 describes how DE and
DFD policies are checked for abidance by the well-formedness
constraints. Finally, Section 5 presents related work and Section 6
outlines conclusions and future work.

2 REPRESENTING KNOWLEDGE ARTEFACTS
The Context Model (CM) proposed in [15] provides an ontolog-
ical framework for the representation of the knowledge artefacts
that lurk behind DE and DFD policies. Fig. 1 depicts a portion
of the CM that includes only the concepts that are of interest to
the work reported in this paper. At the core of this portion is the
class1 DEFDElement (stands for Data Encryption, Fragmentation

1The terms ‘class’ and ‘concept’ are used interchangeably in this work.

Figure 1: Fragment of the Context Model (namespaces omit-
ted to reduce clutter)

and Distribution Element) which encompasses the concepts Object,
DEScheme, DFScheme and DDScheme.2 Instances of the first concept
represent the actual sensitive data assets under protection; instances
of the latter three concepts represent, respectively, particular data
encryption, fragmentation and distribution schemes; brief accounts
of these schemes are provided below—for fuller accounts the inter-
ested reader is referred to [15].

A data encryption scheme specifies a particular symmetric or
asymmetric cryptographic cipher (e.g. AES, RSA, etc.), one that is
represented as an instance of the class Cipher. Ontologically this is
captured through the object property hasCipherwhich interrelates
data encryption schemes with cipher instances (see Fig. 1); in addi-
tion, a cipher instance is linked to the key length that characterises
its strength through the data property hasKeySize.

Data fragmentation schemes are categorised into horizontal and
vertical ones. Horizontal schemes shard database tables at the row
level and are represented as instances of the concept Horizontal
(see Fig. 1); vertical schemes fragment database tables at the column
level and are represented as instances of the concept Vertical.
A vertical fragmentation scheme is associated, through the data
property fragColumns (see Fig. 1), with the identifiers of those
columns that must not form part of the same fragment. A horizontal
fragmentation scheme is associated, through the property rowNum,
with the row number(s) at which the fragmentation takes place.

Finally, a data distribution scheme may specify, through the prop-
erties serverNum and locationNum respectively, the number of
distinct (physical or virtual) machines, and the number of distinct
(physical or network) locations, over which sensitive data fragments
are distributed for privacy reasons. It may also specify, through
the properties hasPhyLocation and hasNetLocation respectively,
the particular physical or network locations at which sensitive data
fragments must be stored; physical and network locations are repre-
sented as instances of the concepts PhyLocation and NetLocation
respectively.

3 CONSTRAINING DE AND DFD POLICIES
This section elaborates on well-formedness constraints and the
restrictions that they impose on the allowable forms that a DE or

2All concepts and properties depicted in Fig. 1 are included in the pdefd namespace
which is omitted to reduce clutter and increase readability.
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Figure 2: HLO Constraints

a DFD policy may assume. More specifically, it outlines how well-
formedness constraints give rise to ontological templates that are
used as touchstones for judging the correctness of a DE or DFD
policy. A brief account of the ontological meta-model for DE and
DFD policies is first in order.

3.1 Ontological Meta-Model for DE and DFD
Policies

Inspired by the XACML standard [10], our work views a DE (DFD)
policy as a container of one or more DE (DFD) rules. These rules
are the actual carriers of the core logic conveyed by a policy. In this
respect, they are associated with the knowledge artefacts in terms of
which this logic is expressed. In particular, they are associated with
a framework of concepts and properties drawn from the underlying
CM that captures these knowledge artefacts and their interrelations.
Ontologically, a DE (DFD) policy takes the form of an instance of the
concept DEPolicy (DFDPolicy), and a DE (DFD) rule takes the form
of an instance of the concept DERule (DFDRule)—see upper part of
Fig. 2. A policy is associated with its constituent rules through the
object property pwd:hasRule.

3.2 Well-Formedness Constraints for DE and
DFD Rules

Well-formedness constraints are classified into primary and sec-
ondary ones. The former specify all those knowledge artefacts from
the underlying CM that must, may or must not be embodied in a
DE (DFD) rule; they also determine the allowable cardinalities with
which these artefacts may appear in a rule. In this respect, they
define the exoteric form of a DE (DFD) rule. On the other hand, sec-
ondary well-formedness constraints go a step further and restrict

Table 1: Axioms for primary well-formedness constraints

Axiom 1 DERule ⊑ (=1 hasObject.Object)
Axiom 2 DERule ⊑ (=1 hasDEScheme.DEScheme)
Axiom 3 DFDRule ⊑ (=1 hasObject.Object)
Axiom 4 DFDRule ⊑ (=1 hasDFScheme.DFScheme)
Axiom 5 DFDRule ⊑ (=1 hasDDScheme.DDScheme)

the allowable values, or ranges of values, that these knowledge
artefacts may assume.

Primary and secondary well-formedness constraints collectively
define a higher-level ontology (HLO), one that essentially articulates
all those conditions that must hold in order for a DE (DFD) rule to be
considered correct. In this respect, the HLO gives rise to an ontologi-
cal template by which a DE (DFD) rule must abide (see Fig. 2). Below
we elaborate on a particular set of HLO constraints3 for DE (DFD)
rules that has been devised in the frame of the PaaSword project.
These constraints are formally expressed in terms ofSROIQ TBox
axioms4 [5] that restrict the classes DERule and DFDRule. It is to
be emphasised here that the proposed constraint set is malleable
in the sense that its contents can be altered to express alternate
ontological templates for DE (DFD) rules, i.e. templates that poten-
tially reflect more accurately the application-specific needs of an
organisation adopting the PaaSword framework. This malleability
is of utmost significance for it empowers stakeholders to instill into
DE and DFD policies their own business logic and overall stance
towards security.

3.3 Primary Well-Formedness Constraints
We start off with DE rules. The first constraint states that each
rule must embody exactly one protected asset. Ontologically, this is
captured through a TBox axiom that demands that a DE rule, i.e.
each instance of the concept DERule, is associated with exactly one
individual5 from the class Object of the CM, and that this associ-
ation should be realised through the object property hasObject.
Axiom 1 of Table 1 provides a formal expression of this constraint6.
The second constraint states that each DE rule must be associ-
ated with exactly one encryption scheme from the class DEScheme,
and that this association should be realised through the property
hasDEScheme. Axiom 2 of Table 1 provides a formal expression of
this constraint.

A similar set of constraints applies to DFD rules: the first states
that eachDFD rulemust embody exactly one protected asset through
the object property hasObject; the second states that each DFD
rule must embody exactly one data fragmentation scheme (i.e. ex-
actly one instance of the CM class DFScheme) through the property

3The term ‘HLO constraints’ will henceforth be used to collectively refer to primary
and secondary well-formedness constraints.
4SROIQ is the Description Language (DL) underpinning OWL 2: any SROIQ

axiom is expressible as an OWL 2 assertion or an OWL 2 expression axiom and vice-
versa. In this paper we resort to SROIQ due to the conciseness and rigorousness of
its notation.
5The terms ‘individual’ and ‘instance’ are used interchangeably in this work.
6The axioms of Table 1 use the following notational convention: for any property R and
conceptC , the class (= 1 R .C) is an abbreviation for the class (≤ 1 R .C)⊓(≥ 1 R .C)

which denotes the class of all individuals that enjoy exactly one association through R
with some individual from C .
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Table 2: Axioms for secondary constraints

DFDRule⊑ ¬(≤1 hasObject.{t}) ⊔
((≤1 hasDFScheme.C1) ⊓ (≤1 hasDDScheme.C2))

where
C1 ≡ (≤1 fragColumns.{CCN}) ⊓ (≤1fragColumns.{CId})
C2 ≡ (≤1 hasPhyLocation.{EU}) ⊓

¬(≤1 hasPhyLocation.¬{EU})

DERule⊑¬(≤1 hasObject.{t}) ⊔ (≤1 hasDEScheme.C3)
where
C3 ≡ (≤1 hasCipher.{AES}) ⊓ ¬(≤1 hasCipher.¬{AES})

⊓ (≤1 hasKeySize.{256ˆˆxsd:integer})

hasDFScheme; the third states that each DFD must embody exactly
one data distribution scheme (i.e. exactly one instance of the class
DDScheme) through the property hasDDScheme. These constraints
are expressed in terms of Axioms 3-5 of Table 1.

3.4 Secondary Well-Formedness Constraints
Secondary well-formedness constraints enable stakeholders to fur-
ther instill into DE and DFD rules their security requirements by
designating the allowable values that the knowledge artefacts em-
bodied in there rules may assume. As an example, consider a situa-
tion whereby an organisation demands that a particular sensitive
relational database table t is always fragmented vertically such that
the columns identified by CCN (stands for “Credit Card Number”)
and CId (stands for “Customer Id”) are never included in the same
fragment; moreover, suppose that the organisation demands that
all fragments of t invariably land on servers located in, say, the EU.

Ontologically, this constraint is captured through the SROIQ

axiom of the 1st row of Table 2. This axiom comprises two dis-
juncts. The first disjunct, namely ¬(≤1 hasObject.{t}), demands
that a DFD rule has no association with t through the property
hasObject. The second disjunct, namely (≤1 hasDFScheme.C1))⊓
(≤1 hasDDScheme. C2)), imposes that any DFD rule is associated,
through the properties hasDFScheme and hasDDScheme, with in-
stances of the (abstract) classes C1 and C2 respectively. C1 is the
class of all individuals that exhibit some association with the col-
umn identifiers CCN and CId through the property fragColumns;
in other words, it is the class of all data fragmentation schemes that
demand that the columns CCN and CId are stored in separate frag-
ments.C2 is the class of all individuals that exhibit some association
with the individual EU through the property hasPhyLocation and
do not exhibit any other associations, through the same property,
with locations other than the EU; in other words, it is the class of
all data distribution schemes that are confined in the EU. Clearly, if
a DFD rule is indeed associated with t (and therefore violates the
first disjunct above), then for the axiom of Table 2 to be satisfied its
second disjunct, along with the associations that it imposes, must
hold.

Secondary constraints naturally apply to DE rules as well. As an
example, consider a situation whereby an organisation wishes to
impose that the table t is invariably encrypted with the AES cipher
and a key length of 256 bits. Such a constraint is formally expressed
in terms of the SROIQ axiom of the 2nd row of Table 2.

4 REASONING ABOUT THE CORRECTNESS
OF DE AND DFD POLICIES: ENFORCING
HLO CONSTRAINTS

Reasoning about the correctness of DE (DFD) rules, hence about
the correctness of the DE (DFD) policies encompassing these rules,
involves reasoning about the abidance of the rules by the HLO
constraints. Below, we outline how such reasoning is performed
by a mechanism that we have developed as part of the PaaSword
project.

As an example, suppose the following set R of SROIQ axioms
which articulate all those knowledge attributes associated with a
DFD rule r; we shall term such an axiom-set a knowledge base (KB)
[12].

R ≡{DFDRule(r), Object(t), DFScheme(fs), DDScheme(ds),

Vertical(fs), PhyLocation(EU), hasObject(r,t),

hasDDScheme(r,ds), hasPhyLocation(ds,EU)}
(1)

According to R, r is associated, through the properties hasObject
and hasDDScheme respectively, with the object t and the distri-
bution scheme identified by the instance ds; ds is additionally
associated, through hasPhyLocation, with the location EU.

4.1 Open and Closed-World Reasoning
Two seminal assumptions underpinning OWL are the Open-World
Assumption (OWA) and the non-Unique Name Assumption (non-
UNA). The former posits that lack of knowledge of a fact does not
necessarily imply knowledge of the negation of the fact; the latter
states that resources with distinct identifiers are not necessarily
distinct. These assumptions stem from the fact that OWL is designed
to describe facts about distributed KBs that are often incomplete
and, to this end, it is geared towards inferring new facts from the
ones already existing in the KBs [12].

Nevertheless, the OWA and non-UNA render the use of OWL
(hence of SROIQ) cumbersome when reasoning about constraint
satisfaction. Consider, for example, the KBR above.R fails to attach
to the rule r a fragmentation scheme for the object t. However,
according to the OWA, this does not mean that r does not have such
a scheme associated with it: it merely means that this association
is not specified in R. Thus, we cannot assert with certainty that
Axiom 4 of Table 1 that demands that a fragmentation scheme must
always be present in a DFD rule is violated. In order to overcome
this obstacle, we adopt the approach proposed in [12] and dispense
with the OWA and the non-UNA, effectively enabling closed-world
reasoning when checking the abidance of DE (DFD) rules by HLO
constraints. This reasoning is based on an extended semantics of
OWL, namely the Integrity Constraint semantics [12]; an outline
of how such reasoning is performed is in order.

4.2 Reasoning about Abidance by HLO
Constraints

Each HLO constraint is translated into a query, one that is posed to
the KB under validation with the aim of discovering any individu-
als that violate the constraint: if the query returns an empty set of
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Table 3: SPARQL Query

SELECT DISTINCT * WHERE
{?x0 pre1:type pre2:DFDRule
FILTER NOT EXISTS {?x0 pre2:hasDFScheme ?x1 .

?x1 pre1:type pre2:DFScheme}
UNION { ?x0 pre2:hasDFScheme ?x2 .

?x0 pre2:hasDFScheme ?x2 .
?x2 pre1:type pre2:DFScheme .
?x0 pre2:hasDFScheme ?x3 .
?x3 pre1:type pre2:DFScheme
FILTER (?x2 != ?x3) }

}

pre1 ::= http://www.w3.org/1999/02/22-rdf-syntax-ns
pre2 ::= http://seerc.org/pci/spv

individuals, the constraint is considered to hold7; otherwise, it is
considered to be violated. The query is, in fact, a SROIQ assertion
axiom that uses variables in place of individuals and expresses the
negation of the HLO constraint that it translates. As an example,
suppose the KB R of equation 1 and consider the HLO constraint
whereby any DFD rule must embody exactly one data fragmenta-
tion scheme. Axiom 4 of Table 1 that expresses this constraint is
translated into a query that attempts to discover in R any individ-
uals that belong to the class DFDRule and which either enjoy no
associations (through the property hasDFDScheme) with instances
of the class DFScheme, or enjoy two or more such associations with
distinct instances of DFScheme. Formally:

DFDRule(x) ∧ (not(hasDFScheme(x ,y) ∧ DFScheme(y)) ∨

(hasDFScheme(x ,y) ∧ hasDFScheme(x , z) ∧

DFScheme(y) ∧ DFScheme(z) ∧ not(y = z))

(2)

Such queries are termed in [12] Distinguished Conjunctive Queries
with Negation as Failure (DCQnot). DCQnot are posed to the KB
under validation in the form of SPARQL queries [1]. Table 3 shows
the SPARQL query for the assertion axiom 2 above. SPARQL queries
are executed in the Pellet reasoner [11] (however, any other OWL
reasoner could have been used instead). In [12], a set of translation
rules for turning any SROIQ axiom into a DCQnot, and subse-
quently into a SPARQL query, is presented8.

Our mechanism has been widely used in the frame of the PaaS-
word project. Although we have not performed any extensive per-
formance analysis, the mechanism has been able to check a mod-
erate size KB (comprising 1210 ABox axioms from the CM used in
PaaSword) against constraint axioms in the order of milliseconds. It
is to be noted here that our mechanism is intended to be used during
application design time for assisting developers in devising correct
security policies for their applications. In this respect, performance
is not a critical feature and moderate variations in latencies are
tolerable. Of course, we intend to conduct further performance tests
to determine the scalability of our mechanism to larger KBs.

7This is an instance of Negation as Failure (NAF ) inferencing: an axiom is derived on the
premise that its negation is not derivable. NAF is widely used in logic programming.
8The translation rules are not reproduced here for reasons of space.

Figure 3: CM semantic inferencing

4.3 Semantic Inferencing During Constraint
Checking

When reasoning about the abidance of a DE (DFD) rule by the HLO
constraints, the concepts and properties of the CMmay be exploited
in order to semantically infer new knowledge artefacts from the
ones already attached to a rule. This facilitates the expression of
constraints that potentially cover a wide range of rules. As an
example, suppose the KB

R ′ ≡ R ∪ {DFScheme(fs), hasDFScheme(r,fs),

fragColumns(fs,CCN), fragColumns(fs,CId)}
(3)

where R is the KB of equation 1. Let us examine whether the DFD
rule r in R ′ abides by the axiom of the 1st row of Table 2. Firstly
r is associated, through the property hasObject, with the object
t and hence the first disjunct of the axiom is violated (see Section
3.4). This means that for the axiom to be satisfied its second dis-
junct must hold. The first conjunct of this disjunct, namely (≤1
hasDFScheme.C1), demands that the fragmentation scheme associ-
ated with r is associated through the property fragColumns with
the columns identified by CCN and CId. We observe that these
associations are indeed present in R ′ for the fragmentation scheme
fs.

Turning now to the second conjunct, namely (≤1 hasDDScheme.
C2)), we observe that r’s distribution scheme ds is associated,
through the property hasPhyLocation with the location Dublin
(rather than with the location EU as the axiom demands). R ′ there-
fore fails to satisfy (at least at the syntactic level) the axiom. Nev-
ertheless, semantic inferencing at the level of the CM allows us to
conclude that Dublin is in fact located in the EU and that therefore
R ′ satisfies the axiom. Such inferencing is performed automatically
by a DL reasoner and, besides unveiling any inconsistencies in the
CM, it also greatly facilitates the definition of HLO constraints as
it absolves stakeholders from having to specify fine-grained con-
straints. For instance, in the example above, it absolves stakeholders
from having to specify constraints that cover each permissible lo-
cation of distribution.

Of course, for such semantic inferencing to be possible certain
knowledge artefacts must be included in the CM. For instance, in
the example above, the concept PhysicalLocation needs to be
extended with such concepts as AdminArea, Country and City, as
well as with the transitive property isLocatedIn (see Fig. 4). Note
that these concepts are introduced during the process of priming
the CM—a process undertaken by the stakeholders in order to
customise the CM for their particular purposes.
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5 RELATEDWORK
Various approaches to the semantic representation of policies have
been proposed in the literature [6, 8, 13]. In [13] KaoS is presented—
an OWL-based framework for the specification and enforcement of
policies that offers: (i) a user interface for formulating policies; (ii)
a policy management layer that identifies and resolves any conflict-
ing policies; (iii) an engine for encoding policies in a programmatic
format suitable for their efficient enforcement. A drawback of the
KaoS approach is that the programmatic translation of the policies
precludes any policy updates during runtime, as such updates re-
quire that the policies are re-compiled to the programmatic format.
In addition, KaoS does not provide any means for reasoning about
the correctness of the policies.

The work in [6] proposes Rei: a framework based on OWL-Lite
[17] for specifying policies concerning the desirable behaviours
of autonomous entities and reasoning about their compliance. A
policy in Rei embodies a list of rules that take the form of OWL
properties, as well as a malleable framework of concepts and their
interrelations that captures the underlying context of application.
Rei adopts the use of placeholders, as in rule-based programming
languages, for the definition of variables that are purpotedly re-
quired for expressing the rules. This, however, prevents Rei from
exploiting the full inferencing potential of OWL when reasoning
about compliance as policy rules are expressed in a formalism that
is alien to OWL. In addition, Rei does not provide any means for
reasoning about the correctness of the policies.

In [8] the POLICYTAB approach is presented for enabling a
trust negotiation process that aims at controlling accesses to sen-
sitive Web resources. More specifically, POLICYTAB adopts OWL
for representing policies that guide this negotiation by allowing
the specification of the credentials that an entity must possess for
performing an action on a resource owned by another entity. Nev-
ertheless, no attempt is made to model the underlying context of
application or determine the correctness, hence the effectiveness,
of these policies.

On a different note, the works in [3, 9, 10] provide declarative for-
malisms for the expression of policies. These formalisms, however,
lack the means of providing any semantic representation of the poli-
cies, which precludes from the outset any form of generic reasoning
about their correctness. In addition, it restricts the portability and
reusability of the policies as any interoperability crucially depends
on the use of shared vocabularies that need to be adopted by the
parties involved in an interaction. This clearly rules out any form
of semantic agreement beyond the boundaries of the organisations
that adopt these vocabularies.

6 CONCLUSIONS
We have presented an approach to defining, and reasoning about,
the correctness of DE and DFD policies in cloud environments. The
approach is based on a class of ontologically-expressed constraints,
the so-called HLO constraints, that enable stakeholders to instill
into DE and DFD policies their business logic and overall stance
towards security. Reasoning about the correctness of the policies
thus amounts to determining their abidance by these constraints.
Such reasoning is based on an extended semantics of OWL, one that

dispenses with the OWA and the non-UNA, allowing the transfor-
mation of the HLO constraints into queries that are posed against
the KBs that represent the policies.

As part of future work we intend to construct an editor that will
provide two main functionalities: firstly, it will facilitate stakehold-
ers in expressing HLO constraints and, secondly, it will facilitate
developers in formulating correct security policies through the ap-
plication of these constraints. More specifically, regarding the latter
functionality, each time a developer attempts to embody a knowl-
edge artefact into a security policy, the constraints will intervene
in order to determine whether this artefact is allowable and, if it is,
to provide all permissible values that it may assume.
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