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A B S T R A C T   

A very common strategy for rejecting electroencephalographic (EEG) artifacts, includes the decomposition of 
filtered EEG signals using a Blind Source Separation (BSS) algorithm, the identification and removal of artifactual 
components and the reconstruction of the cleaned EEG signals. In this pipeline, the performance of the BSS 
algorithm, which is defined as its ability to separate properly the independent sources (like the EEG from arti-
factual sources), is very crucial for rejecting most of the artifacts, while maintaining the most part of EEG intact. 
The overwhelming majority of the published papers uses the extended INFOMAX version of Independent 
Component Analysis (ICA) for artifact rejection purposes. But is this the most efficient algorithm to separate EEG 
signals into independent components? This study comes to shed light to the aforementioned question by 
assessing the performance of the five most common BSS algorithms. The normalized entropy of the brain-related 
components, their correlation between independent components with the original sources and the amount of the 
overall mutual information reduction (MIR) achieved by each decomposition were computed in datasets with 
systematically varying numbers of electrodes (ranging from 19 tο 99), from 26 real human scalp EEG recordings. 
Additionally, 54 different datasets containing artificially contaminated EEG signals were also examined for the 
same purpose, on the basis of the Euclidean distance and the correlation, between the generated Independent 
Components (ICs) and the original vertical and horizontal eye signals, which were used for the contamination. 
The results support that the Adaptive Mixture ICA was the best performing BSS method.   

1. Introduction 

Since Hans Berger recorded the first electroencephalographs (EEGs) 
almost a century ago (1924) [1], the research for the optimization of the 
clinical procedures and the interpretation of the acquired signals has 
been growing constantly and over the last decade gained increased 
attention due to its implementation in a variety of scientific fields and 
applications [2,3]. Each of the aforementioned signals do not represent 
directly the activity of the specific brain area below each electrode, but 
conversely a mixture of source signals that are generated from different 
neuronal sub-areas inside the brain. Some of those areas are connected 
with each other functionally or structurally and are activated concur-
rently [4]. More specifically, the inhibitory and excitatory potentials 
that the cortical nerve cells generate in order to communicate with each 
other, summate in the cortex and can be recorded in the scalp surface as 
an EEG signal [5]. The simultaneous activity of different sources creates 
a linear mixture of electrical signals that each scalp electrode receives in 
different volumes. 

A major contribution to the aforementioned signal comes from bio-
logical artifacts like muscle activity (EMG noise) [6], eye blinks (EOG 
noise) [7] or heartbeats (ECG noise) [8] which corrupt the EEG signal 
even more. The ocular activity in particular, poses as the major obstacle 
of good quality EEG recordings [9], due its unpredicted occurrence and 
because of the subject’s natural need to blink. Such artifacts give rise to a 
number of problems in EEG related studies, like for example corrupting 
the Event Related Potential (ERP) analysis, or tricking the scientists in 
epilepsy studies as the ocular artifacts may be misinterpreted as 
epileptogenic spikes [10,11], leading to incorrect conclusions. 
Instructing the subject to restrict his/her eye movements and blinks may 
be an effective way around this problem, but often comes with the cost 
of affecting its cognitive processes [12,13], resulting in misleading re-
sults also. Additionally, in numerous studies the option of repeating the 
experiment if the subject blinks or moves his/her eyes is undesired, as 
for example in studies including children with Attention Deficit Hy-
peractivity Disorder (ADHD) or in habituation studies [14]. Considering 
these, the clinicians and the researchers are called to find an efficient 
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and accurate method to extract the underlying neural activations, free of 
artifactual activity. 

For this reason, a variety of artifact rejection techniques have been 
developed over the last decades, which can be mainly divided into two 
groups [9]. One group contains the regression – based techniques 
[15,16], where the algorithms try to find the portion of an artifactual 
referral signal in the EEG recordings, while the second group contains 
the Blind Source Separation (BSS) – based methods [17,18], where a BSS 
algorithm is used to decompose the signal into independent components 
(ICs) and then the artifactual sources are removed manually or auto-
matically [9,19–20]. Independent Component Analysis (ICA) [21], is a 
well-established family of BSS algorithms, which is used to decompose 
the EEG signals into statistically independent components (ICs) [22]. 
This family contains different implementations of ICA, like Informax 
[21], FastICA [21], Adaptive Mixture ICA (AMICA) [23] etc., where 
their main difference is spotted on the way they conclude to statistically 
independent sources [21]. Additionally, to the ICA family, there are 
some other BSS algorithms that are based on second-order statistics, like 
Second Order Blind Identification (SOBI) [24], Blind Identification with 
Robust Orthogonalization (SOBIRO) [25] and Algorithm of Multiple 
Unknown Signal Extraction (AMUSE) [26]. 

The variety of the existing BSS methods raises the issue of which 
algorithm is the optimal choice in terms of achieved separation between 
the generated components. The importance of this matter lies in the fact 
that after the algorithmic decomposition of the filtered EEG signal, the 
generated components that represent the ocular artifacts must contain as 
little neural information as possible, so by removing those components 
and reconstructing the signal, the distortion of the original brain infor-
mation is minimized. Thus, a good separation between the desired brain 
components which carry the neural information and the artifactual 
components that will eventually be removed from the data is desirable. 

Previous studies [27,28,29] in this area have covered a wide range of 
different assessment criteria and set the path for the current research. 
Initial studies [28] have tested the more standard algorithms, like 
Infomax, FastICA and Joint Approximation Diagonalization of Eigen- 
matrices (JADE) [30], using MATLAB flops and the Signal to Noise 
Ratio (SNR) of the separated outputs. The results highlighted the higher 
computational cost of Infomax, as its performance is highly dependent 
on the gaussianity of the instantaneous mixtures to be separated. Other 
studies [29] focusing on similar algorithms (Principal Component 
Analysis, AMUSE, JADE, SOBI and fastICA) used simultaneous electro-
corticography in order to evaluate the components that each algorithm 
generated, as this method captures most of the original neural sources. 
So, by computing the correlation coefficient between the outcome of BSS 
and the ECoG recordings, measurable results were obtained about the 
performance of each algorithm. Another category of comparison 
criteria, has to do with the performance of the different algorithms in 
terms of hardware compatibility and achievement. The assessment of 
five commonly applied algorithms like Infomax, JADE, fastICA and 
SOBI, in the basis of better running time, less allocated memory and 
optimal accuracy and scalability, indicated the superiority of SOBI 
against the rest of the algorithms as it presented the best results in terms 
of stability in the performed tests [28]. Similar studies but with different 
types of evaluation criteria, like the dipolarity of the components and 
the achieved mutual information reduction (MIR) have been conducted 
[27] in order to assess a wider range of algorithms and investigate the 
correlation between the aforementioned metrics. The results showed 
that the algorithms that used the natural gradient descent as the method 
for the determination of the maximally independent components proved 
to be the most well-performing in terms of separative ability and 
component definition, with AMICA ranking first. 

The current study comes to examine the performance of five of the 
most commonly used BSS algorithms from a mathematical and statistical 
point of view. The comparison features were drawn both from previous 
works [27], such as the MIR, but also from the desire to investigate some 
of the measures that a large number of ICA methods do use in their 

methodology, like the different entropy features. In addition, the 
Spearman correlation coefficient was also considered as an assessment 
tool, although differentiating from the above features as it requires the 
knowledge of the original brain sources. An important breakthrough in 
the herein proposed methodology is the introduction of a supplementary 
EEG dataset which was artificially contaminated with ocular artifacts 
[31]. For the assessment of the algorithms in this dataset the Euclidean 
Distance and the correlation between the generated components and the 
initial Electrooculographic (EOG) signals were deployed. The results 
from both datasets were then compared and the best performing algo-
rithm was nominated. 

The rest of the paper is organized as follows. In Section 2 the data-
sets, the features and the algorithms used in this study are described. 
Section 3 presents the results for the 7 in total features used herein, 
while at Sections 4 and 5 we provide a discussion of our findings in light 
of the current literature and a conclusion of our work. Finally, a future 
work plan is proposed in Section 6. 

2. Materials and methods 

2.1. Data and preprocessing steps 

2.1.1. Dataset 1 – Real data 
Real continuous EEG recordings obtained from 26 healthy subjects in 

resting state, with their eyes closed. The duration of each dataset varied, 
with the mean duration for the 26 datasets being 12,84 s ± 2,99 s. Left 
(Right) channels were referred to the left (right) mastoid, while all the 
central electrodes were referred to the half of the sum of the left and 
right mastoid. The sampling rate was 250 Hz. A total of 126 scalp 
electrodes were placed according to the Geodesic Sensor Net (EGI, Inc.). 
In order to access and process our data, EEGLAB [32] was used. The 
continuous EEG data were first band pass filtered between 0.5 and 100 
Hz using a FIR filter and then notch filtered at 50 Hz. 

In order to examine the effectiveness of the BSS algorithms against 
the number of the provided channels, the total number of electrodes was 
gradually increased from 19 to 99 by one resulting in 81 different 
channel sets. For the 26 data sets and the 5 algorithms the total number 
of ICA decompositions reached to 26x5x81 = 10.530. 

2.1.2. Dataset 2 - Semi-Simulated data 
Pre-contaminated data 
Real continuous EEG recordings were obtained from 27 healthy 

subjects with normal vision, 14 males (mean age: 28,2 ± 7,5 years) and 
13 females (mean age: 27,1 ± 5,2 years), in an eyes closed session. The 
duration of each dataset was 30 s and in total 54 datasets were obtained 
(two for each subject). Nineteen scalp EEG electrodes (FP1, FP2, F3, F4, 
C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz) were placed ac-
cording to the 10–20 International system. Odd indices referred to the 
left and even indices to the right mastoid respectively, while the three 
central electrodes (Fz, Cz, Pz) were referenced to the half of the sum of 
the left and right mastoids. The sampling frequency was 200 Hz and the 
signals were then band pass filtered at 0,5–40 Hz and Notch filtered at 
50 Hz. Separate, Electrooculography (EOG) signals were obtained dur-
ing an eyes-opened condition, with four electrodes placed above and 
below the left eye and on either side of the canthi. As a result, two bi-
polar signals emerged, with the one accounting for the vertical eye 
movements/eye blinks (equal to the upper minus lower EOG electrode 
recordings) and the other referring to the horizontal eye movements 
(equal to the left minus right EOG electrode recordings). Those signals 
were band-pass filtered at 0.5–5 Hz and were used for the contamination 
of the eyes closed datasets, in order to generate the artificially 
contaminated datasets. For more detailed information about this data-
set, you can refer to [9,31]. 
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2.2. BSS and ICA algorithms 

Several different algorithms were compared in this study. The cov-
eted aim in ICA is the determination of the unmixing matrix that max-
imizes the independence between the component time courses. 
Although, the strategy behind the estimation of this independence dif-
fers for each ICA algorithm. The following algorithms were 
implemented: 

2.2.1. Infomax-ICA 
Infomax-ICA [27] main aim is to maximize independence, by maxi-

mizing negentropy: J(y) = H(ygauss) − H(y). Negentropy J(y) is a 
normalized version of differential entropy H(y). Its use is preferred over 
H(y), as it provides us with a non-negative metric for measuring non- 
gaussianity. Negentropy is also invariant of invertible linear trans-
formations and in some sense is the optimal estimator of non- 
gaussianity, although computationally expensive. By definition maxi-
mizing negentropy comes to the minimization of the differential en-
tropy: H(x) = −

∫
py(η)⋅logpy(η)⋅dη. It presents a gradient method for the 

estimation of the unmixing matrix W and the computation of each 
maximally non-gaussian direction (each independent component). As 
the name of this algorithm implies, the maximization of entropy results 
in the maximization of the mutual information I(x,y) between the input 
and the output vectors, as the mutual information of two random vari-
ables y is defined as: 

I(X; Y) = H(X) − H(X/Y)

2.2.2. Adaptive mixture ICA (AMICA) 
AMICA [23] differentiates from the standard ICA mixture methods, 

as it adapts the source density models of each computed component by 
using a mixture of generalized Gaussian density models. As a result, a 
very good match is achieved between the density model and the actual 
density of the source under study. More specifically AMICA’s mixing 
procedure is based on a three-layered model. In the first two layers the 
standard ICA methodology is being employed and the active ICA 
mixture model is being computed. The third layer approximates the 
probability density function (PDF) of each component as a mixture of 
the Generalized Gaussians, which thereupon is parametrized. This final 
step makes AMICA special, as the other Infomax related algorithms as-
sume pre-defined sub-Gaussian and super-Gaussian PDFs for each of the 
sources [33]. 

2.2.3. Second order statistics-based approaches 
This group of algorithms are based on the joint diagonalization of an 

arbitrary set of time delayed covariance matrices, computed from x(t)
[34]. The following expression describes the above assumption: Rx(t) =

{x(t)x(t + τ)T
} = ARs(τ)A(t), ∀τ, where Rs and Rx are the correlation 

matrix of the source signals and the time delayed matrix respectively. 

2.2.3.1. Algorithm for Multiple Unknown signals extraction (AMUSE):. 
AMUSE [26] is one of the most popular second order statistics BSS ap-
proaches. The decorrelation of x(t) here, takes place at two temporal 
lags, which is also its weakness, as it challenges its robustness [24]. This 
algorithm simultaneously diagonalizes two symmetric matrices and 
obtains the longed-for estimated sources. First of all, the estimation of 
the covariance matrix R̂x(0) at time lag τ = 0 takes place, followed by 
the computation of the eigenvalue decomposition (EVD) or the singular 
value decomposition (SVD) of R̂x(0). Then the algorithm performs the 
pre-whitening transformation x (k) = Qx(k). It also estimates the 
covariance matrix R̂x(τ) for a specific time lag other than τ = 0 and 
performs SVD on the aforementioned matrix. Finally, it estimates the 
covariance mixing matrix as Â = Q+Ux and the source signals as y(k) =
UT

x x (k). Another great feature of this algorithm is its ability to use the 
spectral content of the extracted components in order to arrange them 

by descending linear predictability [35]. 

2.2.3.2. Second order blind identification (SOBI):. SOBI (Belouchrani & 
Cichocki, 2000) shares a very similar methodology with AMUSE. The big 
difference between the two algorithms is that instead of the simulta-
neous diagonalization with EVD and SVD techniques which AMUSE 
adapts, SOBI utilizes joint diagonalization in order to find the orthog-
onal matrix U that is responsible for the diagonalization of the set of 
covariance matrices [24]. For this purpose, a large number of different 
algorithms can be implemented, with most of them including Jacobi 
techniques, parallel factor analysis or alternating least squares etc. Other 
than that, SOBI also uses a pre-whitening transformation and after the 
determination of the covariance matrices at specific time lags, the final 
estimation of the sources follows the exact same procedure as in AMUSE. 

2.2.3.3. Second order blind identification - robust (SOBIRO):. SOBIRO 
introduces a robust orthogonalization step, in order to adapt for noisy 
signals [25]. The orthogonalization stands by the following expression: 

x = Qx(t)

for the mixed signals. As a result, the delayed covariance matrices are 
defined as: 

Rx (pi) =

(
1
N

)
∑N

k=1
x (k)x (k − pi) = QRx (pi)QT 

where (p1, p2, p3, ...pk) are the time delays. Applying Joint Approxi-
mation Diagonalization (JAD), with respect to the orthogonalized mix-
ing matrix A = QA, results in: 

Rx (pi) = QRx (pi)QT = ARs(pi)AT = UDiUT 

The estimation of the orthogonal mixing matrix becomes Â = QĤ =

U, where H is the original mixing matrix. Finally, the longed-for esti-
mated source signals are given as: Ŝk = UTQx(k) and the mixing matrix 
Ĥ = Q+U [25]. 

2.3. Comparison criteria 

In this study the normalized entropy, the Spearman correlation co-
efficient and the amount of mutual information reduction (MIR) will be 
used as the features in order to compare the separation performance of 
the five different BSS algorithms (Infomax-ICA, SOBI, SOBIRO, AMUSE, 
AMICA). Entropy is a measure that has not been yet considered as an 
assessment criterion before, while MIR and Spearman CC has been used 
in similar previous studies [27,36]. We are also going to conduct sta-
tistical analysis and investigate the performance of each algorithm as the 
number of EEG channels (electrodes) increases. It is shown that although 
entropy and MIR share a similar statistical foundation, (more specif-
ically MIR is based on entropy measures in its mathematical formula) 
they generated results that are not entirely matching. Moreover, we 
show that comparing the algorithms using the Spearman correlation 
coefficient produced results that greatly agreed with the MIR based al-
gorithm assessment. 

2.3.1. Entropy as a criterion of Non-gaussianity 
Entropy is considered a novel criterion on measuring non-gaussianity 

and it is generally preferred over kurtosis, due to the fact that in many 
cases kurtosis’s robustness is challenged [21]. In information theory, 
entropy is one of the basic concepts, as it measures the amount of in-
formation that is contaminated in a variable. As the randomness of a 
variable increases, the entropy also increases. In this paper Shannon 
entropy is going to be used, which is one of the most common types of 
entropy. More specifically we are going to examine the normalized 
Shannon entropy for comparative reasons. 

2.3.1.1. Computing the normalized Shannon entropy. As it was previously 
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mentioned the normalized Shannon entropy will be used as the first 
criterion for the evaluation of the performance of the different algo-
rithms. It is known that as the distribution of a component diverges from 
the normal (Gaussian) one, it decreases its entropy value [21]. This 
theoretical observation derives from the fundamental result of infor-
mation theory that a gaussian variable has the largest entropy. Thus, 
according to the central limit theorem, the optimal separation between 
the brain sources is achieved when the components are maximally non- 
gaussian and present the minimal values in terms of entropy, as in that 
case each of them is defined by a combination of less original brain 
sources. 

In this study, three different types of normalized Shannon entropy of 
the component activations were computed:  

i) The first one is based on a formula proposed by Kumar and Kapur 
[37] who ended up in the equation: H (P) = − 1

ln(n)
∑n

i=1piln(pi) , 
where pi is the probability distribution.  

ii) The second one, utilizes the signal itself instead of the probability 
distribution. The corresponding MATLAB function (myEntropy. 
m) follows the equation: H (x) = − 1

n
∑n

i=1x2⋅ln(x2).  
iii) The third mathematical computation for the entropy was based 

on the wavelet entropy. The function of MATLAB (wentropy.m) 
for this type of entropy is expressed as: H (x) =

−
∑n

i=1xi
2log(xi

2). 

An important fact that needs to be mentioned, is that MATLAB uses 
the amplitude of the signal as the input for the computation of the en-
tropy function and not the probability p(n), usually generating negative 
values. To overcome this problem, we normalized the signal by its total 
energy, by using x(n)

sum(x(n)2)
instead of x(n). 

The results of each entropy were stored in corresponding matrices. 
By the end of the computation part of all entropies, the 3D matrix 
dataset × algorithm× channelset, was constructed for all three of them. In 
order to ensure that the entropy values that filled this matrix were 
computed only for components that represented original brain sources 
and not artifacts, the MARA [38] classifier was used for all 10.530 de-
compositions. From the output of this classifier, we only considered as 
normal (brain sources) the components that throughout the whole range 
of the different algorithms and datasets, where identified as brain 
sources with 75% confidence or more. 

2.3.2. Spearman correlation coefficient 
Another criterion for the assessment of the BSS and ICA algorithms is 

the level of correlation between their produced components and the 
actual sources inside the brain [36]. In order for such an algorithm to be 
operating successfully there must be a resemblance between the com-
ponents and the brain sources that generate the original data at the time 
of the EEG recording. For this purpose, a correlation-based index had to 
be drought. The Spearman correlation coefficient was chosen, for two 
major reasons:  

1. It depends only on the relative shape of the signal and not on its 
absolute amplitude.  

2. It poses as a non-parametric measure, in contrast with the Pearson 
correlation coefficient (CC) which performs well only for Gaussian 
sources, which is not the case in our study as in ICA the “maximal” 
non-gaussianity is desired [36]. 

Additionally, the Spearman CC magnitude ranges between 0 and 1, 
with the sign not being of importance here. 

A very important detail in this methodology is the knowledge of the 
original sources for comparison reasons. In order to deal with this 
problem, the decomposition results from the AMICA algorithm were 
considered as the reference and the remaining four algorithms were 
compared. This choice was carefully made as the AMICA algorithm 

presented the best results out of the five, both in terms of the entropy of 
its components but also regarding the MIR values and the Euclidean 
Distance. 

The principal formula for the computation of the Spearman corre-
lation coefficient is: 

r = 1 − 6
∑ d2

N
(
N2 − 1

)

where d represents the difference in statistical rank between the two 
compared variables and N is the total number of pairs of values. 

In Dataset 1 and for every BSS algorithm under study, the CC in every 
channel set is computed as follows:  

a) The correlation between every independent component and every 
“brain source” (AMICA component) is calculated. The higher CC is 
then chosen for this component, as it is more likely for this compo-
nent to represent the corresponding source signal of the brain.  

b) The mean value of the above CCs is then calculated and assigned for 
the specific channel set and algorithm. 

By the end of the computation of all the Spearman Correlation Co-
efficient values for all the decompositions, a 26x4x81 matrix containing 
the corresponding results was constructed. 

2.4. Mutual information reduction 

2.4.1. Mutual information 
The level of independence between a set of random variables can also 

be measured by the amount of the system’s mutual information [27]. 
Mutual information is a non-negative metric that is highly associated 
with the entropy of the system. More specifically, for two random var-
iables A and B, the mutual information between these two variables is 
defined as: I(A;B) = h(A) + h(B) − h(A,B)

where, h(A) and h(B)are the individual entropies of A and A, and 
h(A,B)represents the joint entropy. 

So, for the elements of a signal vector y = [y1, ..., yn], the mutual 
information is described as: 

I(y1; ....; yn) = h(y1)+ ...+ h(yn) − h(y)

The higher the values of mutual information, the smaller the diver-
gence between the uncertainties (entropies) of the joint distribution 
against the individual entropies of the components. Therefore, in a 
system described by small values of mutual information, the constituting 
components present a higher level of independence as they make the 
vector y when described as a hole, to have relatively similar uncertainty 
[h(y)] as if it were considered as a number of each component separately 
[h(y1)+...+h(yn)] [27]. 

As has been discussed above, in BSS the principal goal is the 
computation of the unmixing matrix W, so that the source signals x = A∙ 
s can be decomposed into independent components, y = W∙x, where A 
is the mixing matrix and s the original source signals. The entropy of 
such a component (source estimate) signal can be described by: 

h(y) = log|det(W)|+ h(x)

So, the corresponding mutual information of the transformed data 
will be: 

I(y) = h(y1)+ .....+ h(yn) − log|det(W)| − h(x)

2.4.2. Mutual information reduction 
Every BSS algorithm achieves a different amount of reduction of the 

mutual information during its implementation. The total volume of 
mutual information removed from a set of channels can be described by: 
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MIR = I(x) − I(y)

= [h(x1) + ...+ h(xn)] − [h(y1) + ....+ h(yn)] − h(x)+ log|detW| + h(x)

= log|detW| +[h(x1) + ...+ h(xn)] − [h(y1) + ....+ h(yn)] [36] 
As can be seen, MIR depends only on the determinant of matrix W 

and the difference between the individual entropies of the original sig-
nals and the component time courses. The higher the value of MIR is, the 
more independent the final components are and so better the imple-
mentation of BSS methodology. Completing the computation of the MIR 
values for all the five decompositions and the sum 26 datasets, a 
26x5x81 aggregate matrix was obtained containing the corresponding 
results. What also needs to be mentioned is that the software used for the 
computation of the MIR was taken from the Swartz Center of Compu-
tational Neuroscience (SCCN) of the University of San Diego (https://scc 
n.ucsd.edu/wiki/BSSComparison). 

2.5. Euclidean distance 

The Euclidean distance between two points is defined as the mini-
mum distance between those two points in the Euclidean space and it is 
denoted as the length of a line segment between those two points. So, for 
two points k and m which are given by Cartesian coordinates in the n- 
dimensional Euclidean space, the corresponding mathematical formula 

is: d(k,m) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(k1 − m1)
2
+ (k2 − m2)

2
+ ....+ (kn − mn)

2
√

. 
Now, the case with the ICs that are generated after every BSS 

decomposition is that they can be expressed as two-dimensional vectors. 
In addition, the VEOG and HEOG signals that were separately collected 
from an eyes-open session in Dataset 2 can also be expressed as vectors. 
In order to investigate the level of performance of the algorithms under 
study we can use the Euclidean distance between the ICs and the VEOG 
and HEOG signals. The logic behind this line of thought is the following: 
The optimal decomposition of an EEG signal would account for the 
minimum amount of brain information present into the artifactual 
components that needs to be removed. That means that after a good 
decomposition the artifactual components should only represent the 
biological sources that are unrelated to the crucial cortical activity. In 
the case of the semi-simulated data of Dataset 2, the EOG signals are 
known. As a result, it is possible to measure the relationship between the 
artifactual ICs that are generated by every decomposition with the VEOG 
and HEOG signals, through the Euclidean distance of their vectors. The 

smaller the distance, the stronger the relationship of the artifactual In-
dependent Component with the EOG signal is, and therefore the less the 
amount of brain information that it contains. Eventually, the smaller the 
distance the better and more accurate the decomposition. The above 
procedure provides us with a measurable metric of the performance of 
the algorithm under study, by focusing on the artifactual ICs that the 
corresponding decomposition generates. 

From the 19 channels of each dataset, the EEG decomposition 
generated 19 different independent components. The distance was 
calculated between every IC vector and the VEOG and HEOG signals of 
the corresponding dataset and then the lowest value of Distance was 
taken into account. This value represented the maximum correlation 
between the main artifactual component that was obtained from the 
decomposition and the original vertical and horizontal eye artifacts. This 
procedure was implemented for all 54 artificially contaminated datasets 
and all the five algorithms. Finally, the average value of the Euclidean 
Distance was calculated across all datasets and this metric was used as 
the representative value of the performance of the algorithm under 
study. 

The data and the code used in this paper is available in Github 
(https://github.com/ramsys28/BSSCompPaper), for replication 
purposes. 

3. Results 

3.1. Results regarding Dataset 1 

For all five comparison features (three different entropies, Spearman 
CC value and MIR) that were used in Dataset 1, each algorithm’s per-
formance was plotted in order to carefully examine its behavior as the 
number of the total channels increased. From a statistical point of view a 
one-way ANOVA was chosen as the most appropriate analysis as the aim 
of the study was to compare the different BSS algorithms in terms of 
separating ability and performance, assessing the five aforementioned 
features. 

3.1.1. Entropy based comparisons 
Considering the lower entropy values as the indicator for the optimal 

separation performance, this section presents the results of our study 
based on the aforementioned criterion. Fig. 1 present the behavior of the 
average entropy value of the brain source components, of each 

Fig. 1. The scalp electrodes (S1, S2, S3) receive the linear mix of the electrical activity generated from different neuronal sub-areas inside the brain (X1, X2, X3) in 
different volumes. Then the signal is amplified and illustrated on a computer screen. By using a BSS method, the raw EEG signal from the different electrodes is 
decomposed to the same number of Independent Components. 
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decomposition, for the five algorithms under evaluation. 

3.1.1.1. Kumar based entropy. There was a significant difference be-
tween the mean value of the entropies for the five algorithms [F (4, 125) 
= 36.75, p < .001]. As can be detected, AMICA is the best performing 
algorithm as it presents the lower values of entropy across the whole 
range of channel sets. Post hoc comparisons using the Tukey-Kramer test 
justified this observation as they indicated that the mean value of en-
tropy using the AMICA algorithm (M = 2.24⋅10-8 ± 2,43⋅10-8) differed 
significantly from the corresponding values regarding AMUSE and SOBI 
(p < .001 in both) and non-significantly from RUNICA (p = .34) and 
SOBIRO (p = .57) algorithms. Two major clustering zones divided the 
remaining four algorithms. More specifically, SOBIRO which is the next 
best performing algorithm based on this type of entropy (M = 2,49⋅10-7 

± 5.40⋅10-8) behaves similarly with RUNICA (M = 3.44⋅10-7 ± 8.09⋅10- 

8), even though each method follows a different strategy for the 
extraction of the independent components. The second clustering zone 
belongs to AMUSE (M = 1.56⋅10-6 ± 7.03⋅10-7) and SOBI (M = 1,61⋅10-6 

± 7.10⋅10-7), the two less well-performing algorithms, which both are 
based on Second Order Statistics. Finally, from Fig. 2 it can be observed 
that the value of the entropy seems to be rapidly decreasing as we move 
from the first channel set (19 electrodes) to the tenth channel set (29 
electrodes) and then presents a steadier and almost linear trend until we 
increase to the last channel set (99 electrodes). This generally 
descending character of the entropy lies in the fact that the more the 
channels under consideration, the less the number of the original brain 
sources that define a certain independent component. And according to 
the central limit theorem, this increases the non-gaussianity of this 
component and subsequently it decreases its entropy value. 

3.1.1.2. Normalized Shannon entropy. Considering the myEntropy.m 
sample function of MATLAB as the comparison feature, similar results 
were obtained as with the Kumar entropy-based comparisons. Due to 
this similarity, further graphs considering this type of entropy are 
omitted. ANOVA results indicated that the difference between the mean 
values of entropy for each algorithm were significant [F (4, 125) = 34.15 
, p < .001]. AMICA was also the best performing algorithm (M =
3.49⋅10-11 ± 2.57⋅10-11), with SOBIRO (M = 6.26⋅10-10 ± 1.36⋅10-10) 
and RUNICA (M = 8.55⋅10-10 ± 2.04⋅10-10) following and creating the 

first clustering zone. As was observed using Kumar entropy, AMUSE (M 
= 3.98⋅10-9 ± 1.76⋅10-9) and SOBI (M = 4.08⋅10-9 ± 1.78⋅10-9), two of 
the second order statistics (SOS) algorithms presented the less good 
results regarding their separation performance. The decreasing rate of 
the entropy value in all the algorithms is also present in this case. 

3.1.1.3. Wavelet entropy. The form of our results remained unchanged 
for this final type of entropy. The corresponding graph containing the 
entropy values for each algorithmic decomposition is almost identical to 
Fig. 2 and thus is omitted. The difference between the mean values for 
every algorithm remained significant [F (4, 125) = 37.80 , p < .001]. 
The best performing algorithm is AMICA (M = 1.15⋅10-7 ± 8.42⋅10-8), 
with SOBIRO (M = 2.02⋅10-6 ± 4.38⋅10-7) and RUNICA (M = 2.80⋅10-6 

± 6.55⋅10-7) following. As before, AMUSE (M = 1.27⋅10-5 ± 5.68⋅10-6) 
and SOBI (M = 1.30⋅10-5 ± 5.75⋅10-6) maintained higher entropy values 
compared to the other three algorithms. 

There is an evident classification of the five algorithms under eval-
uation. The AMICA algorithm, which uses the three-layered mixing 
procedure, is the best performing algorithm in terms of component 
separation, as it generates components whose entropy values are 
significantly lower than in any other algorithm. Additionally, SOBIRO 
and RUNICA do present similar results even though they are based on 
different statistical strategies. The least well-performing algorithms, 
AMUSE and SOBI, cluster together and indicate that the more standard 
second order statistic approaches (those without the robust orthogo-
nalization step like SOBIRO) do not meet the expectations in terms of 
separation between the generated components. 

3.1.2. Mutual information reduction based comparisons 
Comparing the amount of mutual information that each algorithm 

managed to remove from the raw data, we extracted the following re-
sults. The dependence between these two metrics is described by an 
almost linear trend line. As the number of channels increased, the 
additional amount of input data resulted in a gradual increase of the MIR 
values. 

A one-way ANOVA was conducted between the algorithms for the 
investigation of the potential differences between the mean values of 
MIR after the implementation of every algorithm. The result of this 
statistical analysis indicated that this difference was not as significant [F 

Fig. 2. Entropy values based on the entropy formula of Kumar and Kapur against the number of the data channels(electrodes) that were taken under consideration. 
The AMICA algorithm is obviously out-performing the other four algorithms in terms of lower entropy and consequently in better separation between the inde-
pendent components. There are also two clustering zones, one including RUNICA and SOBIRO and the other AMUSE and SOBI. 
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(4, 125) = 3.58 , p = .15]. This finding occurs as the divergence between 
the mean MIR values of the algorithms in small channel sets (<26) was 
far less significant (p > .12) than the corresponding value in the input 
data set where a large number of channels was taken into account (p <
0.001 for 45 channels and above). 

Similarly, to the entropy-based comparison, implementing the 
AMICA algorithm in order to decompose the raw EEG data, presented 
the optimal results in terms of component separation (M = 118,57 ±
47.40 kbits/sec). A very close competitor of AMICA was the RUNICA 
algorithm (p = 0.98) which was the next best performing (M = 116,55 ±
46.82 kbits/sec). A second clustering zone was created by the less well- 

performing algorithms, with AMUSE (M = 108.68 ± 42.38 kbits/sec) 
and SOBI (M = 108.66 ± 42.35 kbits/sec) having almost identical values 
throughout the whole range of the channel sets and SOBIRO (M =
105.61 ± 40.98 kbits/sec) achieving the less amount of mutual infor-
mation reduction. 

Again, the three second order statistics (SOS) based algorithms were 
out-performed by the gradient method of RUNICA and the multi-layered 
approach of AMICA. 

3.1.3. Correlation based comparisons 
Setting the exemplary AMICA algorithm as the reference, the four 

Fig. 3. Spearman CC values against the number of the data channels(electrodes). AMICA is taken as the exemplar algorithm and the remaining four algorithms are 
compared. RUNICA is the best performing algorithm in terms of higher correlation with the ground truth sources. AMUSE and SOBI do cluster together and present 
lower levels of correlation, while SOBIRO is the least performing algorithm in terms of correlation. 

Fig. 4. Violin plots presenting the Spearman CC and the Euclidean Distance between the main artifactual IC and the original VEOG and HEOG signals. a) AMUSE and 
SOBI present the highest mean correlation values between the main artifactulal component and the original VEOG signal. b) AMICA is the best performing algorithm, 
as it generated artifactual components with the highest correlation with the original HEOG signal. c) AMICA outperforms the other four algorithms in terms of smaller 
Euclidean distance between the artifactual IC and the VEOG signal. d) Again, AMICA achieves the smallest distance with the horizontal eye-movement 
(HEOG) signal. 
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remaining algorithms were compared on the basis of their components’ 
correlation with the corresponding components (“brain sources”) pro-
duced by AMICA. The divergence between the mean Spearman CC 
value, of the components of each algorithm’s decomposition, for the 26 
subjects and across every channel set, was significant [F (3, 100) =
502.40 , p < .001]. Interestingly, the level of this divergence was much 
more intense (~10-32) than the equivalent that emerged both from the 
entropy and the MIR features. Fig. 3 illustrates the mean Spearman CC 
value of the components, against the number of channels that were 
taken into account. 

RUNICA algorithm (M = 0.60 ± 0.05) outperformed the other three 
as it presented components with higher correlation values regarding the 
“original brain sources”. Of course, this may be related to the fact that 
AMICA’s components were chosen as the ground truth and the two al-
gorithms share a similar methodology, as both are Infomax related. So, a 
higher correlation between them is not a surprising result. Additionally, 
there is a clear clustering between the SOS algorithms. AMUSE (M =
0,39 ± 0.07) and SOBI (M = 0,39 ± 0.06) did not perform as well as 
RUNICA, but achieved slightly better results than SOBIRO (M = 0,35 ±
0.06) where the correlation with the original brain sources was smaller 
compared with all the other algorithms. 

3.2. Results regarding Dataset 2 

In this section the results of the comparison features regarding the 
semi-simulated data of Dataset 2 are provided. These results concern the 
computation of the Spearman Correlation Coefficient (CC) and the 
Euclidean Distance (D) between the independent components that are 
generated and the initial vertical-EOG (VEOG) and horizontal-EOG 
(HEOG) signals that were acquired separately in an eyes-open EEG 
session. The one-way ANOVA was chosen as the statistical analysis tool 
while the p-values were calculated for comparative reasons. 

3.2.1. Spearman CC between ICs and VEOG/HEOG signals 

3.2.1.1. Vertical-EOG (VEOG) signals. The difference between the mean 
Spearman CC values across the 54 datasets for the five different algo-
rithmic decompositions was significant [ F (4, 265) = 98.80 , p < .001 ] 
in the case of the correlation with the VEOG signals/eye blinks. 

Fig. 4 (a) illustrates the mean CC values, the interquartile range and 
the distribution for every algorithm. The best performing algorithms 
concerning this metric proved to be SOBI (M = 0.87 ± 0.1) and AMUSE 
(M = 0.86 ± 0.09) as the main eye artifactual IC that they generated 
introduced the highest correlation with the initial VEOG signal that was 
used for the artificial contamination of Dataset 2. The two higher order 
statistic algorithms, AMICA (M = 0.71 ± 0.1) and RUNICA (M = 0.65 ±
0.09), achieved slightly lower levels of performance, while the 
remaining second order statistics algorithm SOBIRO (M = 0.55 ± 0.12) 
produced ICs with the smallest amount of correlation with the VEOG 
signal out of all. 

3.2.1.2. Horizontal-EOG (HEOG) signals. The results concerning the 
relation of the ICs with the bipolar signal that represented the horizontal 
eye movements showed a different picture compared to the VEOG one. 
Fig. 4 (b) presents the aforementioned results. 

Again, in this case, there was a significant difference between the 
mean correlation for the five different algorithms [ F (4, 265) = 29.24 , p 
< .001 ]. Here, the AMICA algorithm (M = 0.82 ± 0.16) outperformed 
the other four, with RUNICA (M = 0.73 ± 0.17) following and leading 
AMUSE (M = 0.70 ± 0.13) and SOBI (M = 0.70 ± 0.12) which clustered 
together and presented almost identical results. Finally, SOBIRO (M =
0.52 ± 0.11) emerged again as the algorithm that did not perform as 
well as the other four as it presented the smallest amount of correlation. 
The above ranking seems to greatly agree with the results that we ob-
tained from the MIR comparison in Dataset 1. It also shares many 

characteristics with the corresponding ranking of the Entropy features, 
with the difference that in the latter case, the SOBIRO algorithm clus-
tered with RUNICA and outperformed the other two Second Order 
Statistics algorithms (SOBI and AMUSE). 

3.3. Euclidean distance between ICs and VEOG/HEOG signals 

3.3.1. Vertical-EOG (VEOG) signals 
In this section the results concerning the mean minimum Euclidean 

Distance between the main artifactual IC and the initial VEOG signal 
that represents the eye blinks are presented. The main results are illus-
trated in Fig. 4 (c), while a more detailed statistical analysis showed that 
the algorithms were characterized by an important difference between 
the mean distance values [F (4, 265) = 29.36 , p < .001]. 

One more time, AMICA (M = 3.25⋅103 ± 1.04⋅103) posed as the 
optimal algorithm regarding its performance as it generated artifactual 
components whose distance with the VEOG signal was significantly 
smaller than the remaining four algorithms. More specifically, the other 
higher order statistics algorithm RUNICA (M = 4.84⋅103 ± 1.07⋅103) 
joined AMUSE (M = 5.01⋅103 ± 1.07⋅103), SOBI (M = 5.02⋅103 ±

1.13⋅103) and SOBIRO (M = 5.20⋅103 ± 1.12⋅103). 

3.3.2. Horizontal-EOG (HEOG) signals 
In the same manner as above, the study of the distance of the arti-

factual components with the horizontal-EOG signals this time, resulted 
in similar observations, as can be seen in Fig. 4 (d). The level of diver-
gence between the mean distance values across the different algorithms 
remained significant [F (4, 265) = 4.21 , p = .002], but the deviation 
between the algorithms was smoother than the one concerning the 
VEOG signals (p = .014 between AMICA and RUNICA compared to p < 
.001 in VEOG). 

AMICA’s main artifactual components introduce the highest simi-
larity with the HEOG signal (M = 4.16⋅103 ± 1.65⋅103), while SOBI (M 
= 5.37⋅103 ± 2.12⋅103), RUNICA (M = 5.40⋅103 ± 2.16⋅103) and AMUSE 
(M = 5.41⋅103 ± 2.13⋅103) cluster together creating a zone of interme-
diate performance. The algorithm whose main eye artifactual compo-
nent diverges the most from the original horizontal-EOG bipolar signal is 
SOBIRO (M = 5.55⋅103 ± 2.19⋅103), with the aforementioned distance 
being the longest of the above. 

3.3.3. Execution time 
Although our study was mainly focused around the level of separa-

tion that each algorithm achieved, we also proceeded to the computa-
tion of the overall time needed for the algorithm to run and generate the 
decomposed components. The computational cost of each algorithm is 
presented in Table 1. According to this table, the three Second Orden 
Statistics (SOS) algorithms decompose the raw EEG signal considerably 
faster than the Infomax based algorithms. More specifically, AMUSE 
(mean time = 1.70 sec) is the fastest algorithm with SOBI (mean time =
2.66 sec) and SOBIRO (mean time = 2.85 sec) following close by. On the 
other hand, the Infomax (RUNICA) algorithm (mean time = 25.01 sec) 
requires significantly more computational time and finally AMICA 
(mean time = 57.60 sec) emerges as the slowest algorithm of all, soaring 
the mean computational time at almost 1 min per decomposition. 

In order to summarize all the herein presented results regarding the 
quality of the separation of all the methods under study, Table 1 was 

Table 1 
Computational time (sec) needed for each BSS algorithm.  

Number of Channels RUNICA SOBI SOBIRO AMUSE AMICA 

19  13.87  1.79  1.79  1.66  28.22 
32  16.51  1.93  1.93  1.67  38.82 
64  27.82  2.69  2.99  1.68  65.26 
99  41.97  4.23  4.67  1.75  98.21 
Mean Time:  25.01  2.66  2.85  1.70  57.60  
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formed. In this table the rank of each algorithm and for each criterion is 
noted and then the mean ranking was computed by averaging all the 
ranks for each algorithm separately. According to the mean rank the 
final ranking was concluded. Table 2 indicates AMICA as the best per-
forming algorithm (mean ranking = 1.62), RUNICA comes second 
(mean ranking = 2.62), then AMUSE (mean ranking = 2.75) and SOBI 
(mean ranking = 3) follow, while SOBIRO (mean ranking = 4.12) seems 
to be the less good performing BSS algorithm. 

4. Discussion and conclusion 

The implementation of BSS separation methods in the pre-processing 
stage of electroencephalographic data, has been practiced for over 20 
years now. A very large number of studies [27,28,29] have been con-
ducted, trying to understand the underlying validity of the available 
algorithms and categorize them in terms of achieved performance and 
plausibility. A good decomposition implies that the independent com-
ponents are optimally separated with each other, meaning that they 
approach accurately the original brain sources that generated the EEG 
signal. Consequently, the amount of the neural information included in 
the artifactual components is minimized and thus the loss of information 
is prevented when those components are removed. The comparison 
between the variety of the different algorithms becomes an ever- 
increasing need, as the effective pre-processing of the raw EEG signals 
is of vital importance for the next stages of any EEG related study. 

In this piece of work, we deployed a range of mathematical and 
statistical metrics in order to appoint the algorithm with the optimal 
separation capabilities between the generated Independent Compo-
nents. We tried to spherically approach the matter by using two different 
datasets. The first dataset was from 26 real human EEG recordings in an 
eyes closed session, while the second dataset contained 27 human re-
cordings that were artificially contaminated with electrooculographic 
artifacts. The assessment of the algorithms was made on a software 
basis, meaning that only the characteristics of specific statistical and 
mathematical metrics were taken into consideration and not the 
computational load and time for the decomposition of the filtered EEG 
signals. Some of the comparison features were drawn both from previous 
studies like the Mutual Information Reduction (MIR) [27] and the 
Spearman Correlation Coefficient (CC) [36], while others like the 
different entropy features were used for the first time to the best of our 
knowledge. The consideration of both real EEG data (Dataset 1) and 
artificially contaminated datasets (Dataset 2) come as a solution to the 
problem of not knowing the ground sources that generated the EEG 
signals, which is always present in studies that investigate the perfor-
mance of the Blind Source Separation algorithms. As it is presented 
below, the overall agreement between the results from the two datasets 
reinforces the validity of our study and justifies our choice for the spe-
cific metrics as the comparison features. 

4.1. Ranking 

The most efficient algorithm proved to be AMICA. In reference to 
Dataset 1, this was true both in terms of entropy (Fig. 1) and MIR. In the 
artificially contaminated signals of Dataset 2, AMICA was also the 

dominant algorithm when the Euclidean distance was computed for 
both the vertical and horizontal EOGs. The ascendance of this algorithm 
was challenged though, when the Spearman Correlation Coefficient (CC) 
was calculated between the artifactual components of each decompo-
sition and the original vertical EOGs, something that was not the case for 
the corresponding value regarding the horizontal eye movement arti-
facts. The exceptional performance of the AMICA algorithm, compared 
with RUNICA, the other natural gradient descent-based algorithm, 
probably lies in the fact that AMICA adapts the source density models by 
implementing a mixture of Generalized Gaussian density models [33]. 
Thus, a better separation between the components was achieved in 
contrast with the more standard infomax algorithm that assumes one 
fixed parametric template for the PDF of each independent component. 
The difference in performance between those two algorithms was far 
more significant when the normalized entropies were assessed [KUMAR: 
p = 0.34 , Normal: p = 0.36 , Wavelet: p = 0.32] compared with the 
corresponding performances regarding the MIR [p = 0.98]. Regarding 
the comparison features in the semi-simulated Dataset 2, the afore-
mentioned algorithms had a largest divergence between their achieved 
performances, [p = 0.014 for the Euclidean Distance] and [p = .008 for 
the Spearman CC]. 

From the Second Order Statistics based algorithms SOBIRO did 
cluster with Infomax (RUNICA) (a higher order statistics-based algo-
rithm), when the algorithms were assessed by their lower entropy values 
[p = 0.96 in all] in Dataset 1, despite no visible connection between the 
methodologies that they follow for the extraction of the independent 
components. This was not the case for the MIR, neither for the 
correlation-oriented comparisons, as SOBIRO was the least well- 
performing algorithm and clustered partially with SOBI and AMUSE 
[p = 0.94 in both] in the case of the MIR and on the other hand differed 
significantly [p < .001 in both] for the Spearman CC. Those two last 
algorithms presented a similar decomposition character, throughout the 
whole range of comparison features, something that is not surprising as 
they share a very similar methodology. The difficulty of SOBIRO for 
optimal separation was also observed when the artificially contaminated 
signals of Dataset 2 were decomposed, as it achieved the smallest 
amount of correlation and at the same time the highest Euclidean Dis-
tance with the original artifactual EOG signals. What derives from the 
above, is that the existence of the robust orthogonalization step that 
SOBIRO presents improved the ability of the algorithm to separate the 
components, compared with the other SOS based algorithms, only in 
terms of lower entropy values of the component’s time courses and not 
for the amount of mutual information that the decomposition reduces, 
the final correlation that the independent components present compared 
with the original sources and the Euclidean Distance between the 
generated artifactual components and the original EOG signals. 

The results of our study confirmed that even though each BSS algo-
rithm managed to decompose the original EEG data into maximally in-
dependent brain components, there is an evident classification between 
those algorithms as they achieve different levels of performance. This 
finding comes to supplement existing studies, that also punctuate the 
importance of ranking amongst the different ICA algorithms. This need 
originates from the fact that in real time situations, a computationally 
fast and accurate decomposition is of vital importance during the 

Table 2 
Ranking table of all the BSS algorithms.   

Dataset 1 Dataset 2 Mean Ranking Final Ranking 

Algorithms Entropy MIR CC Time CC 
VEOG 

CC 
HEOG 

ED 
VEOG 

ED 
HEOG   

AMICA 1 1 – 5 3 1 1 1 1.62 1 
AMUSE 4 3 2 1 2 3 3 4 2.75 3 
RUNICA 3 2 1 4 4 2 2 3 2.62 2 
SOBI 5 4 2 2 1 4 4 2 3 4 
SOBIRO 2 5 3 3 5 5 5 5 4.12 5  
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clinical procedure, as it composes the pre-processing stage of the raw 
EEG signal. So, the idea behind choosing the finer BSS algorithm was 
that the more precise the decomposition is, the more efficient the artifact 
removal procedure becomes and the loss of neural information is 
limited. We found that AMICA presented the optimal results. 
Throughout both datasets and the entire range of channel sets under 
study, it generated independent components whose time courses were 
characterized by the lower normalized entropy values compared with 
the other four algorithms, something that dictates superior statistical 
independence between them according to the central limit theorem. The 
superiority of AMICA extended also in a more likelihood-oriented 
metric, that of MIR. Another interesting result was that by setting 
AMICA’s produced components as the ground truth brain sources and 
assessing the performance of the remaining algorithms in terms of cor-
relation of their components with them, a very similar ranking with the 
other features was extracted, as RUNICA outperformed the SOS based 
algorithms. Thus, it is safe to say that when an accurate and clean 
decomposition of a raw EEG signal is desired, the higher order statistics 
algorithms and especially AMICA pose as the current optimal solution 
compared with other algorithms that follow the Second Order Statistics 
methodologies. 

It is suggested that in order to be able to safely appoint an algorithm 
(or a group of algorithms) as optimally performing, a more thorough 
research must be conducted. This realization lies in the fact that in 
addition to the performance of an algorithm in terms of achieved sep-
aration of the computed “maximally independent” components, the 
computational complexity and demand should also be assessed in a 
more detailed manner. For example, in our study, where the hardware 
used was pretty standard (8 GB RAM, Intel i3 processor), SOBIRO mal-
functioned after the input channels reached 116, with the required 
computational time exceeding the admissible. So, from that perspective, 
we encourage the line of thought of feature studies to be the simulta-
neous assessment of the computational load and the separation perfor-
mance of different and newer algorithms in a variety of experimental 
setups. Achieving this, will get us a step closer to the optimization of the 
real time pre-processing approaches and the establishment of EEG as a 
3D, real time brain imaging technique. 

Table 3 summarizes all the aforementioned results and presents an 
overview of the algorithms under comparison, by noting both the pros 
and the key features but also some of the drawbacks during their 
implementation. The connection between the quality of the separation 
achieved and the computational cost that is demanded for the use of 
each algorithm is also visible here, enabling us to say that there is a clear 
tradeoff between performance and execution time. 
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