
Context-aware Security Models for PaaS-enabled Access Control

Simeon Veloudis1, Yiannis Verginadis2, Ioannis Patiniotakis2, Iraklis Paraskakis1 and Gregoris

Mentzas2
1South East European Research Centre (SEERC), International Faculty of the University of Sheffield, City College, 24Prox.

Koromila St., 54622, Thessaloniki, Greece
2Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece

{sveloudis, iparaskakis}@seerc.org, {jverg, gmentzas}@mail.ntua.gr

Keywords: Context-aware security, Ontologies, Access Control, Data privacy, Security by design

Abstract: Enterprises are embracing cloud computing in order to reduce costs and increase agility in their everyday

business operations. Nevertheless, due mainly to confidentiality, privacy and integrity concerns, many are

still reluctant to migrate their sensitive data to the cloud. In this paper, firstly, we outline the construction of

a suitable Context-aware Security Model, for enhancing security in cloud applications. Secondly, we outline

the construction of an extensible and declarative formalism for representing policy-related knowledge, one

which disentangles the definition of a policy from the code employed for enforcing it. Both of them will be

employed for supporting innovative PaaS-enabled access control mechanisms.

1. INTRODUCTION

Adopting the cloud computing paradigm means that

an enterprise’s IT environment is eventually

transformed into a matrix of interwoven

infrastructure, platform and application services

which are delivered from diverse service providers

(NIST, 2011). The cloud services that an enterprise

will come to depend on will span not only different

technologies and geographies, but most importantly,

entirely different domains of ownership and control,

making the strategic and operational management of

the enterprise cloud environment a particularly

challenging assignment. Nevertheless, enterprises

increasingly recognize the compelling economic and

operational benefits of cloud computing (Micro,

2010). Virtualizing and pooling IT resources in the

cloud enables organisations to realize significant cost

savings and accelerates deployment of new

applications, simultaneously transforming business

and government at an unprecedented pace (Group,

2013). Regardless of the differences in the figures

reported with respect to the size of the cloud

computing market or its future prospects, analysts

agree on the view that the adoption of cloud

computing is advancing at an ever-increasing pace

(Cisco, 2011) and that it introduces a new economy-

based paradigm (Vaquero et al., 2008). At the same

time, however, it creates new security vulnerabilities

stemming mainly from the fact that corporate data

reside in externally controlled servers or untrusted

cloud providers. Exploiting these vulnerabilities may

result in data confidentiality and integrity breaches

(CSA, 2013).

Evidently, these valuable business benefits cannot

be realised without addressing the data security

challenges introduced by cloud computing

(Verginadis et al., 2015a). A promising approach to

alleviating the security concerns associated with

cloud computing is to assist application developers in

defining effective security controls for the sensitive

data of their cloud applications. To this end, in

(Verginadis et al., 2015a) we proposed a generic

security-by-design framework, essentially a PaaS

solution that includes capabilities for guiding

developers through the process of defining

appropriate access control policies for safeguarding

their sensitive data. In order to provide such

This paper has been published in Jorge Cardoso, Donald Ferguson, Víctor Méndez Muñoz, and Markus
Helfert (Eds.) Proceedings 6th International Conference on Cloud Computing and Services Science
(CLOSER 2016) Vol. 1 and 2, Rome, Italy, April 23-25 (pp. 202–212). SCITEPRESS - Science and
Technology Publications. DOI: https://doi.org/10.5220/0005918602020212

capabilities, such a generic framework bears two

seminal characteristics. Firstly, it hinges upon an

adequate access control scheme, one that takes into

account the inherently dynamic and heterogeneous

nature of cloud environments. Secondly, it captures

the knowledge that lurks behind such a scheme (e.g.

actions, subjects, locations, environmental attributes,

etc.) using a generic and extensible formalism, one

which can be tailored to the particular needs of

different cloud applications. The first characteristic

calls for the incorporation of the notion of context in

access control policies, i.e. the consideration of

dynamically-changing contextual attributes that may

characterise data accesses. It therefore involves the

development of a re-usable and generic Context-

aware Security Model which goes beyond the

traditional context-insensitive security (e.g. DAC,

MAC, RBAC (Ferrari, 2010)). The second

characteristic calls for the adoption of a declarative

approach to modelling policy-related knowledge, one

which is orthogonal to the code of any particular

cloud application and which can be easily adapted to

suit the needs of any such application.

The aim of this paper is twofold. On the one hand,

it outlines the construction of a suitable Context-

aware Security Model, one which essentially supports

an Attribute-based Access control (ABAC) model

(Hu et al., 2014). On the other hand, it outlines the

construction of an extensible and declarative

formalism for representing policy-related knowledge,

one which disentangles the definition of a policy from

the code employed for enforcing it, bringing about the

following advantages: (i) it allows the policy-related

knowledge to be extended and instantiated to suit the

needs of a particular application, independently of the

code employed by the application; (ii) it forms an

adequate basis for reasoning generically about the

correctness and consistency of the security policies,

hence about the effectiveness of the security controls

that these policies give rise to.

The rest of this paper is organised as follows. In

Section 2, we elaborate on a context-aware security

model that will be used as an underlying vocabulary

for describing access control policies. In Section 3,

we introduce a policy model that allows for the

semantic description of PaaS-enabled access controls.

In Section 4, we briefly discuss relevant work and in

Section 5 we conclude the paper by presenting the

next steps for the implementation and evaluation of

the proposed approach.

2. CONTEXT-AWARE SECURITY

MODEL

In this section, we present a context-aware access

model, which can be used by the developers in order

to annotate database Entities, Data Access Objects

(DAO) or any other web endpoints that give access to

sensitive data managed by cloud applications. This

context model conceptualises the aspects, which must

be considered during the selection of a data-access

policy. These aspects may be any kind of information

which is machine-parsable (Dey 2001); indicatively

they may include the user’s IP address and location,

the type of device that s/he is using in order to interact

with the application as well as his/her position in the

company. These aspects can be interpreted in

different ways during the security policy

enforcement. In particular, the context aware access

model can set the basis for determining which data is

accessible under which circumstances.

2.1 Context-aware Security Meta-

Model

In Figure 1, we present a meta-model that captures the

main facets of the Context-aware Security Model

along with their associations. Specifically, this model

comprises of two different kinds of facets that may

give rise to:

 Dynamic security controls – These controls grant

or deny access to sensitive data on the basis of

dynamically-evolving contextual attributes

which are associated with the entity requesting

the access. The relevant model facets are:

o Security Context Element

o Permission

o Context Pattern

 Static security controls - These controls are

independent of any dynamically evolving

contextual attributes. They mainly correspond to

the distribution and cryptographic protection

features that certain data artefacts must have. The

relevant model facet is the:

o Data Distribution and Encryption

Element (DDE)

Figure 1: Context-aware security meta-model.

According to this meta-model, instances of these

aforementioned facets formulate the Context-

aware Security Model. Furthermore, Context

Pattern elements are directly associated to

Security Context Elements (through the

hasSecurityContextElement property) in order

to be defined, while the latter can be associated with

certain Permission elements. Due to space

limitations we discuss only the context model facets

that are relevant to access control.

2.2 Context Model Facets

This section provides an elaboration of the initial set

of facets that have been included in the part of the

model that gives rise to dynamic security controls.

We note that all these model facets are focused on the

aspects relevant to access control for cloud services.

2.2.1 Security Context Element

The Security Context Element refers to the

following five top-level concepts:

 Location - This class describes a physical

and/or a network location where data are stored

or from which a particular entity is requesting to

access data.

 DateTime - This class describes the specific

chronological point expressed as either instant or

interval that characterises an access request

(extends owl-time:TemporalEntity).

 Connectivity - This class captures the

information related to the connection used by the

Figure 2: UML Class diagram for the Connectivity context element.

Subject for accessing sensitive data (see Figure

2).

 Object - This class refers to any kind of

artefacts that should be protected based on their

sensitivity levels. These artefacts may refer to

(non-) relational data, files, software artefacts

that manage sensitive data or even infrastructure

artefacts used.

 Subject - An instance of this class represents

the agent seeking access to a particular data

artefact. This can be an organization, a person, a

group or a service (extends foaf:Agent,

goodrelations:BusinessEntity,

goodrelations:ProductOrService).

In Figure 2, we provide further details regarding

the Connectivity top level concept that include

subclasses, imported or extended external classes,

data and object properties. The identifier pcm (stands

for PaaS Control Model) recognises the namespace

underlying the classes and properties of the proposed

vocabulary. Due to space limitations the details of all

the top level concepts are not explained in this paper

but they are available in the following URL:

http://imu.ntua.gr/software/context-aware-security-

model.

2.2.2 Context Pattern

The next facet of this model is the Context

Pattern model that includes the following top-level

concepts:

 Location pattern - It refers to recurring

motives of data accesses that are recognized

with respect to the Location context element.

 DateTime pattern - It refers to recurring

motives of data accesses that are recognized

with respect to the DateTime context element.

 Connectivity pattern - It refers to

recurring motives of data accesses that are

recognized with respect to the Connectivity

context element.

 Object pattern - It refers to recurring

motives of data accesses that are recognized

with respect to the Object context element.

 Permission pattern - It refers to recurring

motives of data accesses that are recognized

with respect to the Permission element.

 Access Sequence Pattern - It refers to data

accesses that are recognized by any preceding

access actions made by a particular Subject

(extends Kaos:AccessAction).

For the above vocabulary we use the identifier

pcpm (stands for PaaS Context Pattern Model) for

recognising the respective namespace of underlying

classes and properties.

2.2.3 Permission

Another important facet is the Permission model
that involves the following top-level concepts:

 Data Permission - This class refers to any

action allowed by a Subject upon a data

entity (extends schema.org:Action)

 DDL Permission - This class reveals the data

definition language (DDL) related actions on a

specific Object.

The Data Permission involves four subclasses:

 Datastore Permission – It describes any

action allowed by a Subject upon a data entity

in a datastore (e.g. Search, List, Select, Insert,

etc.)

 File Permission - It describes any action

allowed by a Subject upon a file (e.g. Read,

ChDir, Move, Delete, etc.)

 WebEndpoint Permission – It describes

any web endpoint related action that is allowed

upon a data artefact (e.g. Get, Put, Post,

Delete).

 Volume Permission - It refers to any access

permission to a dedicated infrastructure

artefact.

The DDL Permission involves two subclasses:

 Datastore DDL Permission – It describes

any DDL related permission on a datastore

(e.g. Create, Alter, Drop).

 File System Structure Permission - It

describes any DDL related permission on a file

(e.g. CreateDir, RenameDir, CopyDir,

DeepCopyDir, ChOwner, etc.).

For the above vocabulary we use the identifier

ppm (stands for PaaS PaaS Permission Model) for

recognising the respective namespace of underlying

classes and properties.

In Section 3, we demonstrate the way that these

contextual elements that give rise to dynamic security

controls, can set the basis for developing a policy

model for paas-enabled access control.

http://imu.ntua.gr/software/context-aware-security-model
http://imu.ntua.gr/software/context-aware-security-model

3. POLICY MODEL FOR PAAS-

ENABLED ACCESS CONTROL

Three are the main types of security policy that the

proposed PaaS solution aims at supporting:
 Data encryption policies. These determine the

strength of the cryptographic protection that

each sensitive object enjoys for confidentiality

reasons. They give rise to security controls

enforceable during bootstrapping of a cloud

application.

 Data fragmentation and distribution policies.

These determine the manner in which sensitive

data objects must be fragmented and

distributed to different physical servers for

privacy reasons. They too give rise to security

controls enforceable during application

bootstrapping.

 Access control policies. These are essentially

ABAC policies that determine when to grant,

or deny, access to sensitive data on the basis of

dynamically-evolving contextual attributes

associated with the entity requesting the

access. Context awareness is deemed of utmost

importance for leveraging the security of

cloud-based applications which by definition

operate in dynamic and heterogeneous

environments. Access control policies give rise

to security controls dynamically enforceable

during application execution time.
Due to space limitations, in this paper we only
consider access control policies.

3.1 Access Control Policy Model

We argue that, in order to aid application developers
in defining effective ABAC policies for any kind of

sensitive data, our PaaS solution must be underpinned
by an underlying ontological model, one which bears
the following characteristics:
 It is founded on a framework of relevant

interrelated concepts which capture all those

knowledge artefacts that are required for

describing an ABAC policy. Such a framework is

provided by the vocabulary outlined in Section 2

 It uses an extensible formalism for

accommodating the framework of interrelated

concepts, hence expressing ABAC policies.

Such a representation disentangles the definition

of a policy from the code employed for enforcing

it, offering the following seminal advantages: (i)

It allows the framework of relevant interrelated

concepts to be extended and instantiated,

independently of the code employed by the

application. Such an extension/instantiation aims

at customising the framework to the particular

needs of a given application. (ii) It forms an

adequate basis for reasoning generically about

the correctness and consistency of the ABAC

policies, hence about the effectiveness of the

security controls that these policies give rise to.

3.1.1 ABAC Policy Rules

Following an approach inspired by the XACML

standard (OASIS, 2013), an ABAC policy comprises

one or more rules. A rule is the most elementary

structural element and the basic building block of

policies. A generic template for ABAC rules is

provided in Table 1:

Table 1: ABAC rule template.

[actor] with [context expression] has [authorisation] for

[action] on [controlled object]

The template defines a generic structure, in terms of

relevant attributes, to which all ABAC rules in our

PaaS framework adhere. It comprises several

attributes which are further elaborated below.

 actor identifies the subject who may request

access to perform an operation on a sensitive

object; it draws its values from the

Figure 3: ABAC ontological model

pcm:Subject class of the Security Context

Element model defined in Section 2.

 context expression is a Boolean expression which

identifies the environmental conditions that must

hold in order to permit, or deny, the performance

of an operation on a sensitive object. Context

expressions are further elaborated in Section

3.1.2.

 authorisation determines the type of

authorisation (positive i.e. ‘permit’, or negative

i.e. ‘deny’) that is granted.

 action identifies the operation that may, or may

not, be performed on the protected sensitive

object; it draws its values from the

ppm:Permission class of the Security

Context Element model defined in Section 2.

 controlled object identifies the sensitive object on

which access is requested; it draws its values

from the pcm:Object class of the Security

Context Element model defined in Section 2.

In our ontological model, an ABAC rule takes the

form of an instance of the class pac:ABACRule (see

Figure 3). A number of object properties are attached

to this class which are intended to capture the

aforementioned attributes. As depicted in Figure 3,

these associate the pac:ABACRule class with an

appropriate framework of relevant classes from the

vocabulary of Section 2 which adequately capture the

attributes of the ABAC rule template. The identifier

pac (stands for PaaS Access Control) recognises the

namespace underlying the classes and properties of

the proposed ontological model.

3.1.2 Context Expressions

A context expression takes the form of an instance of
the class pac:ContextExpression (see Figure 3).
It specifies a number of constraints on the values of
one or more instances drawn from the vocabularies
pcpm:ContextPattern and
pcm:SecurityContextElement defined in
Section 2. The class pac:ContextExpression is
associated with these vocabularies through the object
properties pac:hasPatternParameter and
pac:hasParameter respectively depicted in Figure
4. As we would expect, a context expression may
combine two or more constraints using logical
connectives (conjunction, disjunction, exclusive
disjunction, negation). In order to capture such
combinations of constraints, the
pac:ContextExpression class encompasses a
subclass for each logical connective (see Figure 4). A

context expression may be defined recursively, in
terms of one or more other context expressions. This
is captured by associating the
pac:ContextExpression class with itself through
the properties pac:hasParameter and
pac:hasPatternParameter (see Figure 4).

3.1.3 ABAC Policies and Policy Sets

In our ontological model, an ABAC policy takes the

form of an instance of the class pac:ABACPolicy. It

is associated with the rules that it comprises through

the property pac:hasABACRule. An ABAC policy

may comprise a multitude of ABAC rules which

potentially evaluate to different (and conflicting)

access control decisions. This calls for a combining

algorithm which reconciles the different decisions

and determines an overall decision for the entire

policy (OASIS, 2013). An example of a combining

algorithm is the ‘deny-overrides’ algorithm, whereby

a policy evaluation resolves to ‘deny’ if at least one

of its constituent rules evaluates to ‘deny’, or if none

of them evaluates to ‘permit’. A combining algorithm

takes the form of an instance of the class

pac:CombiningAlgorithms depicted in Figure 3.

A combining algorithm is attached to an ABAC

policy through the property

pac:hasPolicyCombiningAlgorithm.

Following an approach inspired by the XACML

standard (OASIS, 2013), access control policies are

grouped into policy sets. In our ontological model, a

policy set takes the form of an instance of the class

pac:ABACPolicySet (see Figure 3). A policy is

associated with its enclosing policy set through the

property pac:belongsToABACPolicySet. A

policy set may exhibit a hierarchical structure and

comprise one or more other ABAC policy sets. This

recursive inclusion is captured by rendering the

pac:belongsToABACPolicySet property

applicable to ABAC policy sets too (see Figure 3).

Figure 4: Context expression ontological model.

ABAC policy sets are also associated with combining

algorithms. As in the case of policies, these reconcile

the potentially different access control decisions to

which the policies comprising a policy set may

evaluate.

It is to be noted here that analogous policy models

have been devised for the rest of the policy types

outlined at the beginning of Section 3.

3.2 Access Control Policies in Linked

USDL

Section 3.1 outlined a model for the generic

representation of ABAC policies. This section

demonstrates how this model can be incorporated into

the ontological framework provided by Linked USDL

(2014), and in particular, into USDL-SEC – Linked

USDL’s security profile (USDL stands from Unified

Service Description Language). By capitalising on

USDL-SEC, our approach avoids the use of bespoke,

non-standards-based, ontologies for the

representation of ABAC policies (see Section 4 for a

relevant outline of such ontologies). Instead, it is

based on a diffused ontological framework which has

recently attracted considerable research interest. In

addition, the adoption of Linked USDL brings about

the following advantages (Pedrinaci et al., 2014): (i)

Linked USDL relies on existing widely-used RDF(S)

vocabularies (such as GoodRelations, FOAF and

SKOS), whilst it can be easily extended through

linking to further existing, or new, RDF(S)

ontologies. In this respect, it promotes knowledge

sharing whilst it increases the interoperability,

reusability and generality of our framework. (ii) By

offering a number of different profiles, Linked USDL

provides a holistic and generic solution able to

adequately capture a wide range of business details.

This is important for our work as it allows us to

adequately capture the business aspects of the

security policies encountered within our framework.

(iii) Linked USDL is designed to be easily extensible

through linking to further existing, or new, RDF(S)

ontologies. This is particularly important for our

model as it facilitates seamless integration with the

Context-aware security model devised in Section 2.

(iv) It provides ample support for modelling,

comparing, and trading services and service bundles.

It also provides support for specifying, tracking, and

reasoning about the involvement of entities in service

delivery chains. This is important for our work for it

allows comparisons to be drawn between different

policy models that may potentially be offered through

our framework.

Due to space limitations, an introduction to the

classes and properties offered by Linked USDL is

omitted here. The interested reader is referred to

(Linked USDL, 2014).

3.2.1 Incorporating ABAC Policies into
USDL-SEC

USDL-SEC provides a simple vocabulary for
describing the security properties of an application. It
introduces the classes SecurityProfile,
SecurityGoal, SecurityMechanism, and
SecurityTechnology, along with a number of
relevant object properties, as depicted in Figure 5 (to
reduce notational clutter, we avoid prefixing the
usdl-sec namespace to USDL-SEC classes and
properties). For a more complete discussion of the
classes and properties offered by USDL-SEC the
reader is referred to (Linked USDL, 2014).

Figure 5: USDL-SEC customisation (only classes and properties used in this paper are depicted).

At the highest level of abstraction, the ABAC

policy model forms, essentially, a particular security

profile to which a cloud application may adhere. In

this respect it is modelled as an instance of USDL-

SEC’s SecurityProfile class, namely

pac:PaaSAccessControlProfile. A security

profile is associated, through the object property

hasSecurityGoal, with one or more security goals

from the USDL-SEC class SecurityGoal. In the

case of ABAC policies, the security goal is

authorisation. This is modelled in Figure 5 by

associating the instance

pac:PaaSAccessControlProfile with an

instance, say pac:AccessControlGoal, of the

Authorization class through the property

hasSecurityGoal. The Authorization class

forms a sub-concept of SecurityGoal.

The authorisation goal is achieved by means of a

suitable access control mechanism. USDL-SEC

provides a layer of abstraction, namely the concept

SecurityMechanism, for the specification of such

a mechanism. In particular, it provides the class

AccessControl, a sub-concept of

SecurityMechanism, an instance of which, say

pac:AccessControlMechanism, represents the

access control mechanism offered by our PaaS

framework. This instance is associated with the

pac:AccessControlGoal instance through the

property isImplementedBy.

The access control mechanism represented by the

instance pac:AccessControlMechanism is

realised by means of some underlying concrete

security technology. USDL-SEC provides a layer of

abstraction, namely the concept

SecurityTechnology, for the specification of such

a technology. In our model, the access control

mechanism is realised by the access control

technology provided by our PaaS framework. This is

modelled by introducing the pac:PaaSABAC

subclass (see Figure 5), along with the instance

pac:AccessControlTechnology which

represents this access control technology. This

instance is associated with the access control

mechanism through the property

isRealizedByTechnology (see Figure 5). The

pac:PaaSABAC subclass is associated, through the

property pac:hasABACPoliceSet, with the class

pac:ABACPolicySet (the top concept of the ABAC

policy model of Section 3). This essentially captures

the fact that the access control mechanism is realised

through the policies encompassed in one or more

ABAC policy sets.

It is to be noted here that the policy models

devised for the rest of the policy types outlined at the

beginning of Section 3 are incorporated into USDL-

SEC in an analogous manner.

4. RELATED WORK

In the literature, there is a plethora of context models.

For example (Strang & Linnhoff-Popien, 2004) and

(Bettini et al., 2010) review models of context that

range from key-value models, to mark-up schemes,

graphical models, object-oriented models, logic-

based models and ontology-based models. An

interesting context model is the one proposed in

(Miele et al., 2009), which was initially developed for

mobile devices and later extended for the use in

service-based applications in (Bucchiarone et al.,

2010). Another example is the one in (Truong et al.,

2009) who developed an ontological model of the

W4H classification for context. The W4H ontology

provides a set of general classes, properties, and

relations exploiting the five semantic dimensions:

identity (who), location (where), time (when), activity

(what) and device profiles (how). Furthermore,

authors exploited the concepts of the W4H ontology

by including domain-independent common context

concepts from existing work; e.g. FOAF, vCard, the

OWL-Time Ontology, etc. The five dimensions of

context have been also pointed out earlier by Abowd

and Mynatt (Abowd and Mynatt, 2000) who stated

that context should include the ‘five W’: Who, What,

Where, When, and Why. For example, by ‘Who’,

they mean that it is not enough to identify a person as

a customer; the person’s past actions and service

related background should also be identified for better

service provision. ‘What’ refers to the activities

conducted by the people involved in the context and

interactions between them. ‘Where’ represents

location data. ‘When’ is related to time. ‘Why’

specifies the reason for ‘Who’ did ‘What’. ‘Why’

represents a complicated notion and acts as the

driving force for context sensitive information

systems. In addition to that, from the literature review

we found interesting efforts that concerned modelling

languages, which take context explicitly into account.

The first such effort was ContextUML a UML-based

modelling language that was specifically designed for

Web service development and applies model-driven

development principles; see (Sheng, 2005). In a Web-

service-based environment, ContextUML considers

that context contains any information that can be used

by a Web service to adjust its execution and output.

The need for the exploitation of context in the

access control mechanisms is quite evident from the

state-of-the-art. Nevertheless, we found that even

dedicated context-aware extensions to traditional

access control models (e.g. Role-based Access

Control - RBAC) either do not cover all the

contextual elements with a reusable security related

context model or are proven hard to maintain in

dynamic environments where users often change

roles or are not known a priori (Heupel, 2012). On the

other hand, pure ontological models (e.g. (Truong et

al., 2009), or even Attribute-based Access Control

(ABAC) approaches (e.g. (Jung et al., 2014)) they do

not seem to cover all the security requirements

associated with the lifecycle of a cloud application

(i.e. bootstrapping and run-time). Specifically, either

they do not cover the full range of contextual

elements that are associated with all the security

aspects of sensitive data managed by cloud

applications or they are based on heavy inferencing

that is considered as inefficient for such dynamic

environments (Verginadis et al., 2015b).

With respect to policies and policy-based

applications, syntactic descriptions promote a

declarative approach to policy expression, one which

aims at replacing a trend whereby policies are

encoded imperatively, as part of the same software

that checks for their compliance. Several markup

languages have been proposed for the declarative

description of policies, some prominent examples

being RuleML (2015), XACML (OASIS, 2013),

SAML (2008) and WS-Trust (2007). These generally

provide XML-based syntaxes for expressing policy

rules and sets. Nevertheless, such syntactic

descriptions fail to capture the knowledge lurking

behind policies. In this respect, they are merely data

models that lack any form of semantic agreement

beyond the boundaries of the organisation that

developed them. Any interoperability relies on the

use of vocabularies that are shared among all parties

involved in an interaction.

In order to overcome the aforementioned

limitations, semantically-rich approaches to the

specification of policies have been brought to the

attention of the research community. These generally

embrace Semantic Web representations for capturing

what we term action-oriented policies, i.e. policies

which control when a particular actor or subject can

perform a specified action on, or through the use of, a

particular resource. These approaches typically

employ ontologies in order to assign meaning to

actors, actions and resources. Several works in the

area of semantic policy representation have been

reported in the literature (Uszok, 2005; Kagal et al.,

2003; Hu et al., 2014). In (Uszok, 2005), the authors

presented KAoS – a general-purpose policy

management framework which exhibits a three-

layered architecture comprising:

 A human interface layer, which provides a

graphical interface for policy specification in

natural language.

 A policy management layer, which uses OWL

(2004) to encode and manage policy-related

knowledge.

 A policy monitoring and enforcement layer,

which automatically grounds OWL policies to a

programmatic format suitable for policy-based

monitoring and policy enforcement.

In (Kagal et al., 2003) the authors proposed Rei –

a policy specification language expressed in OWL-

Lite (2004). It allows the declarative representation of

a wide range of policies which control which actions

can be performed, and which actions should be

performed, by a specific entity. Furthermore, it

defines a set of concepts (rights, prohibitions,

obligations, and dispenations) for specifying and

reasoning about access control rules. In this respect,

it provides an abstraction which allows the

specification of a desirable set of behaviours which

are potentially understandable – hence enforceable –

by a wide range of autonomous entities in open and

dynamic environments.

In (Hu et al., 2014), the authors recognise that

cloud computing, and in particular the concept of

multi-tenancy, calls for policy-driven access control

mechanisms. They propose an ontology-based

framework to capture the common semantics and

structure of different types of access control policies

(e.g. XACML policies, firewall policies, etc.), and

facilitate the process of detecting anomalies in these

policies. Their ontology captures the underlying

domain concepts involved, the policy structure and

the policy attributes. Particular types of access control

policies are obtained by appropriately instantiating

the ontology.

5. CONCLUSIONS

We have presented suitable vocabularies of concepts

and properties, namely the Security Context Element,

the Context Pattern and the Permission which

adequately captures the knowledge lurking behind

ABAC policies. We have also proposed a generic

ontological model for the abstract representation of

ABAC policies which disentangles the definition of a

policy from the actual code employed for enforcing

it, bringing about the advantages outlined in Section

3.1. The model is underpinned by the Security

Context Element vocabulary, and is incorporated into

the ontological framework offered by USDL-SEC

(Linked USDL’s security profile). Such a model

forms the basis of our proposed PaaS solution –

essentially a security-by-design framework which

aims at aiding cloud application developers in

defining effective access control policies for any kind

of sensitive data.

Any effective use of the ABAC policy model

requires a mechanism through which it can be

suitably customised in order to allow for the

specification of concrete ABAC policies. Such a

customisation amounts to an extension and/or

instantiation of the abstract classes and properties

presented in Sections 3 and 4. It is the responsibility

of such a mechanism to ensure that this

extension/instantiation takes place according to a set

of predefined governance policies. In the future, we

intend to investigate the construction of a higher-level

ontological framework that will generically

accommodate these governance policies and thus

pave the way for the construction of a generic

customisation mechanism that can be easily adapted

to the particular needs of the potential adopter of our

framework.

ACKNOWLEDGEMENTS

The research leading to these results has received

funding from the European Union’s Horizon 2020

research and innovation programme under grant

agreement No 644814. The authors would like to

thank the partners of the PaaSword project

(www.paasword.eu) for their valuable advices and

comments.

REFERENCES

Abowd, G., & Mynatt, E., 2000. Charting past, present, and

future research in ubiquitous computing. ACM

Transactions on Computer-Human Interaction

(TOCHI) - Special issue on human-computer

interaction in the new millennium, 29-58.

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J.,

Nicklas, D., Ranganathan, A., & Riboni, D., 2010. A

survey of context modelling and reasoning techniques.

Pervasive and Mobile Computing, 161-180.

Bucchiarone, A., Kazhamiakin, R., Cappiello, C., Nitto, E.,

& Mazza, V., 2010. A context-driven adaptation

process for service-based applications. In ACM

Proceedings of the 2nd International Workshop on

Principles of Engineering Service-Oriented Systems

(PESOS'10), pp. 50-56, Cape Town, South Africa.

Cisco, 2011. Cloud: What an Enterprise Must Know, Cisco

White Paper.

CSA, 2013. The Notorious Nine. Cloud Computing Top

Threats in 2013. Cloud Security Alliance.

Dey, A. K., 2001. Understanding and Using Context. In

Personal and Ubiquitous Computing Journal, vol. 5, no.

1, p. 4-7.

Ferrari, E., 2010. Access Control in Data Management

Systems. Synthesis Lectures on Data Management,

Morgan & Claypool, Vol. 2, No. 1, p. 1-117.

Group, T. T., 2013. The Notorious Nine. Cloud Computing

Top Threats in 2013. Cloud Security Aliance (CSA).

Heupel, M., Fischer, L., Bourimi, M., Kesdogan, D., Scerri,

S., Hermann, F., Gimenez, R., 2012. Context-Aware,

Trust-Based Access Control for the di.me Userware. In

Proceedings of the 5th International Conference on

New Technologies, Mobility and Security (NTMS'12),

pp. 1-6, Istanbul, Turkey, IEEE Computer Society.

Hu, V. C., Ferraiolo, D., Kuhn, R., Schnitzer, A., Sandlin,

K., Miller R., and Scarfone K., 2014. Guide to Attribute

Based Access Control (ABAC) Definition and

Considerations. NIST.

Hu, H., Ahn, G.-J. and Kulkarni, K., 2011. Ontology-based

policy anomaly management for autonomic computing.

In 7th International Conference on Collaborative

Computing: Networking, Applications and

Worksharing (CollaborateCom).

Jung, C., Eitel, A., Schwarz, R., 2014. Cloud Security with

Context-aware Usage Control Policies. In Proceedings

of the INFORMATIK'14 Conference, pp. 211-222.

Kagal, L., Finin, T. and Joshi, A., 2003. A Policy Language

for a Pervasive Computing Environment. In 4th IEEE

Int. Workshop on Policies for Distributed Systems and

Networks (POLICY '03).

Linked USDL, 2014. Available online: http://linked-

usdl.org/.

Micro, T., 2010. The Need for Cloud Computing Security.

Trend Micro.

Miele, A., Quintarelli, E., Tanca, L., 2009. A methodology

for preference-based personalization of contextual data.

In ACM Proceedings of the 12th International

Conference on Extending Database Technology:

Advances in Database Technology (EDBT'09), pp. 287-

298, Saint-Petersburg, Russia.

NIST, 2011. Cloud Computing Reference Architecture,

National Institute of Standards and Technology.

OASIS, 2013. OASIS eXtensible Access Control Markup

Language (XACML). Available: http://docs.oasis-

open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html.

OWL Web Ontology Language Reference. W3C

Recommendation, 2004. Available online:

http://www.w3.org/TR/owl-ref/.

Pedrinaci, C., Cardoso, J. and Leidig, T., 2014. Linked

USDL: a Vocabulary for Web-scale Service Trading. In

11th Extended Semantic Web Conference (ESWC).

Specification of Deliberation RuleML 1.01, 2015.

Available online:

http://wiki.ruleml.org/index.php/Specification_of_Deli

beration_RuleML_1.01.

Security Assertions Markup Language (SAML) Version

2.0. Technical Overview, 2008. Available online:

https://www.oasis-

open.org/committees/download.php/27819/sstc-saml-

tech-overview-2.0-cd-02.pdf

Sheng, Q., & Benatallah, B., 2005. ContextUML: A UML-

Based Modeling Language for Model-Driven

Development of Context-Aware Web Services

Development. In Proceedings of the International

Conference on Mobile Business (ICMB'05), pp. 206-

212, IEEE Computer Society.

Strang, T., Linnhoff-Popien, C., 2004. A Context Modeling

Survey. In Workshop on Advanced Context Modelling,

Reasoning and Management, (UbiComp'04) - The

Sixth International Conference on Ubiquitous

Computing. Nottingham, England.

Truong, H.-L., Manzoor, A., Dustdar, S., 2009. On

modeling, collecting and utilizing context information

for disaster responses in pervasive environments. In

ACM Proceedings of the first international workshop

on Context-aware software technology and

applications (CASTA'09), pp. 25-28, Amsterdam, The

Netherlands.

Uszok, A., Bradshaw, J., Jeffers, R., Johnson, M., Tate, A.,

Dalton, J. and Aitken, S., 2005. KAoS Policy

Management for Semantic Web Services. IEEE Intel.

Sys., vol. 19, no. 4, pp. 32 - 41.

Vaquero, L.M., Rodero-Merino, L., Caceres, J. and

Lindner, M., 2008. A break in the clouds: Towards a

cloud definition. SIGCOMM Comput. Commun. Rev.,

vol 39, no 1, pp. 50 — 55.

Verginadis, Y., Michalas, A., Gouvas, P., Schiefer, G.,

Hübsch, G., Paraskakis, I., 2015a. PaaSword: A

Holistic Data Privacy and Security by Design

Framework for Cloud Services. Proceedings of the 5th

International Conference on Cloud Computing and

Services Science (CLOSER 2015), May 20-22, Lisbon,

Portugal.

Verginadis, Y., Mentzas, G., Veloudis, S., Paraskakis, I.,

2015b. A Survey on Context Security Policies. In

Proceedings of the 1st International Workshop on

Cloud Security and Data Privacy by Design

(CloudSPD'15), co-located with the 8th IEEE/ACM

International Conference on Utility and Cloud

Computing, Limassol, Cyprus, December 7-10.

WS-Trust 1.3, 2007. Available online: http://docs.oasis-

open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.doc.

