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Abstract: Enterprises are embracing cloud computing in order to reduce costs and increase agility in their everyday 

business operations. Nevertheless, due mainly to confidentiality, privacy and integrity concerns, many are 

still reluctant to migrate their sensitive data to the cloud. In this paper, firstly, we outline the construction of 

a suitable Context-aware Security Model, for enhancing security in cloud applications. Secondly, we outline 

the construction of an extensible and declarative formalism for representing policy-related knowledge, one 

which disentangles the definition of a policy from the code employed for enforcing it. Both of them will be 

employed for supporting innovative PaaS-enabled access control mechanisms.    

1. INTRODUCTION 

Adopting the cloud computing paradigm means that 

an enterprise’s IT environment is eventually 

transformed into a matrix of interwoven 

infrastructure, platform and application services 

which are delivered from diverse service providers 

(NIST, 2011). The cloud services that an enterprise 

will come to depend on will span not only different 

technologies and geographies, but most importantly, 

entirely different domains of ownership and control, 

making the strategic and operational management of 

the enterprise cloud environment a particularly 

challenging assignment. Nevertheless, enterprises 

increasingly recognize the compelling economic and 

operational benefits of cloud computing (Micro, 

2010). Virtualizing and pooling IT resources in the 

cloud enables organisations to realize significant cost 

savings and accelerates deployment of new 

applications, simultaneously transforming business 

and government at an unprecedented pace (Group, 

2013). Regardless of the differences in the figures 

reported with respect to the size of the cloud 

computing market or its future prospects, analysts 

agree on the view that the adoption of cloud 

computing is advancing at an ever-increasing pace 

(Cisco, 2011) and that it introduces a new economy-

based paradigm (Vaquero et al., 2008). At the same 

time, however, it creates new security vulnerabilities 

stemming mainly from the fact that corporate data 

reside in externally controlled servers or untrusted 

cloud providers. Exploiting these vulnerabilities may 

result in data confidentiality and integrity breaches 

(CSA, 2013). 

Evidently, these valuable business benefits cannot 

be realised without addressing the data security 

challenges introduced by cloud computing 

(Verginadis et al., 2015a). A promising approach to 

alleviating the security concerns associated with 

cloud computing is to assist application developers in 

defining effective security controls for the sensitive 

data of their cloud applications. To this end, in 

(Verginadis et al., 2015a) we proposed a generic 

security-by-design framework, essentially a PaaS 

solution that includes capabilities for guiding 

developers through the process of defining 

appropriate access control policies for safeguarding 

their sensitive data. In order to provide such 
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capabilities, such a generic framework bears two 

seminal characteristics. Firstly, it hinges upon an 

adequate access control scheme, one that takes into 

account the inherently dynamic and heterogeneous 

nature of cloud environments. Secondly, it captures 

the knowledge that lurks behind such a scheme (e.g. 

actions, subjects, locations, environmental attributes, 

etc.) using a generic and extensible formalism, one 

which can be tailored to the particular needs of 

different cloud applications. The first characteristic 

calls for the incorporation of the notion of context in 

access control policies, i.e. the consideration of 

dynamically-changing contextual attributes that may 

characterise data accesses. It therefore involves the 

development of a re-usable and generic Context-

aware Security Model which goes beyond the 

traditional context-insensitive security (e.g. DAC, 

MAC, RBAC (Ferrari, 2010)). The second 

characteristic calls for the adoption of a declarative 

approach to modelling policy-related knowledge, one 

which is orthogonal to the code of any particular 

cloud application and which can be easily adapted to 

suit the needs of any such application.  

The aim of this paper is twofold. On the one hand, 

it outlines the construction of a suitable Context-

aware Security Model, one which essentially supports 

an Attribute-based Access control (ABAC) model 

(Hu et al., 2014). On the other hand, it outlines the 

construction of an extensible and declarative 

formalism for representing policy-related knowledge, 

one which disentangles the definition of a policy from 

the code employed for enforcing it, bringing about the 

following advantages: (i) it allows the policy-related 

knowledge to be extended and instantiated to suit the 

needs of a particular application, independently of the 

code employed by the application; (ii) it forms an 

adequate basis for reasoning generically about the 

correctness and consistency of the security policies, 

hence about the effectiveness of the security controls 

that these policies give rise to. 

The rest of this paper is organised as follows. In 

Section 2, we elaborate on a context-aware security 

model that will be used as an underlying vocabulary 

for describing access control policies. In Section 3, 

we introduce a policy model that allows for the 

semantic description of PaaS-enabled access controls. 

In Section 4, we briefly discuss relevant work and in 

Section 5 we conclude the paper by presenting the 

next steps for the implementation and evaluation of 

the proposed approach. 

2. CONTEXT-AWARE SECURITY 

MODEL  

In this section, we present a context-aware access 

model, which can be used by the developers in order 

to annotate database Entities, Data Access Objects 

(DAO) or any other web endpoints that give access to 

sensitive data managed by cloud applications. This 

context model conceptualises the aspects, which must 

be considered during the selection of a data-access 

policy. These aspects may be any kind of information 

which is machine-parsable (Dey 2001); indicatively 

they may include the user’s IP address and location, 

the type of device that s/he is using in order to interact 

with the application as well as his/her position in the 

company. These aspects can be interpreted in 

different ways during the security policy 

enforcement. In particular, the context aware access 

model can set the basis for determining which data is 

accessible under which circumstances.  

2.1 Context-aware Security Meta-

Model 

In Figure 1, we present a meta-model that captures the 

main facets of the Context-aware Security Model 

along with their associations. Specifically, this model 

comprises of two different kinds of facets that may 

give rise to: 

 Dynamic security controls – These controls grant 

or deny access to sensitive data on the basis of 

dynamically-evolving contextual attributes 

which are associated with the entity requesting 

the access. The relevant model facets are: 

o Security Context Element 

o Permission  

o Context Pattern  

 Static security controls - These controls are 

independent of any dynamically evolving 

contextual attributes. They mainly correspond to 

the distribution and cryptographic protection 

features that certain data artefacts must have. The 

relevant model facet is the:  

o Data Distribution and Encryption 

Element (DDE) 



 

 

Figure 1: Context-aware security meta-model. 

According to this meta-model, instances of these 

aforementioned facets formulate the Context-

aware Security Model. Furthermore, Context 

Pattern elements are directly associated to 

Security Context Elements (through the 

hasSecurityContextElement property) in order 

to be defined, while the latter can be associated with 

certain Permission elements. Due to space 

limitations we discuss only the context model facets 

that are relevant to access control.  

2.2 Context Model Facets 

This section provides an elaboration of the initial set 

of facets that have been included in the part of the 

model that gives rise to dynamic security controls. 

We note that all these model facets are focused on the 

aspects relevant to access control for cloud services. 

2.2.1 Security Context Element 

The Security Context Element refers to the 

following five top-level concepts: 

 Location - This class describes a physical 

and/or a network location where data are stored 

or from which a particular entity is requesting to 

access data. 

 DateTime - This class describes the specific 

chronological point expressed as either instant or 

interval that characterises an access request 

(extends owl-time:TemporalEntity). 

 Connectivity - This class captures the 

information related to the connection used by the 

Figure 2: UML Class diagram for the Connectivity context element. 



 

Subject for accessing sensitive data (see Figure 

2). 

 Object - This class refers to any kind of 

artefacts that should be protected based on their 

sensitivity levels. These artefacts may refer to 

(non-) relational data, files, software artefacts 

that manage sensitive data or even infrastructure 

artefacts used. 

 Subject - An instance of this class represents 

the agent seeking access to a particular data 

artefact. This can be an organization, a person, a 

group or a service (extends foaf:Agent, 

goodrelations:BusinessEntity, 

goodrelations:ProductOrService). 

In Figure 2, we provide further details regarding 

the Connectivity top level concept that include 

subclasses, imported or extended external classes, 

data and object properties. The identifier pcm (stands 

for PaaS Control Model) recognises the namespace 

underlying the classes and properties of the proposed 

vocabulary. Due to space limitations the details of all 

the top level concepts are not explained in this paper 

but they are available in the following URL: 

http://imu.ntua.gr/software/context-aware-security-

model.  

2.2.2 Context Pattern  

The next facet of this model is the Context 

Pattern model that includes the following top-level 

concepts: 

 Location pattern - It refers to recurring 

motives of data accesses that are recognized 

with respect to the Location context element. 

 DateTime pattern - It refers to recurring 

motives of data accesses that are recognized 

with respect to the DateTime context element. 

 Connectivity pattern - It refers to 

recurring motives of data accesses that are 

recognized with respect to the Connectivity 

context element. 

 Object pattern - It refers to recurring 

motives of data accesses that are recognized 

with respect to the Object context element. 

 Permission pattern - It refers to recurring 

motives of data accesses that are recognized 

with respect to the Permission element. 

 Access Sequence Pattern - It refers to data 

accesses that are recognized by any preceding 

access actions made by a particular Subject 

(extends Kaos:AccessAction). 

For the above vocabulary we use the identifier 

pcpm (stands for PaaS Context Pattern Model) for 

recognising the respective namespace of underlying 

classes and properties. 

2.2.3 Permission  

Another important facet is the Permission model 
that involves the following top-level concepts: 

 Data Permission - This class refers to any 

action allowed by a Subject upon a data 

entity (extends schema.org:Action) 

 DDL Permission - This class reveals the data 

definition language (DDL) related actions on a 

specific Object. 

The Data Permission involves four subclasses: 

 Datastore Permission – It describes any 

action allowed by a Subject upon a data entity 

in a datastore (e.g. Search, List, Select, Insert, 

etc.) 

 File Permission - It describes any action 

allowed by a Subject upon a file (e.g. Read, 

ChDir, Move, Delete, etc.) 

 WebEndpoint Permission – It describes 

any web endpoint related action that is allowed 

upon a data artefact (e.g. Get, Put, Post, 

Delete). 

 Volume Permission - It refers to any access 

permission to a dedicated infrastructure 

artefact. 

The DDL Permission involves two subclasses: 

 Datastore DDL Permission – It describes 

any DDL related permission on a datastore 

(e.g. Create, Alter, Drop). 

 File System Structure Permission - It 

describes any DDL related permission on a file 

(e.g. CreateDir, RenameDir, CopyDir, 

DeepCopyDir, ChOwner, etc.). 

For the above vocabulary we use the identifier 

ppm (stands for PaaS PaaS Permission Model) for 

recognising the respective namespace of underlying 

classes and properties. 

In Section 3, we demonstrate the way that these 

contextual elements that give rise to dynamic security 

controls, can set the basis for developing a policy 

model for paas-enabled access control. 

http://imu.ntua.gr/software/context-aware-security-model
http://imu.ntua.gr/software/context-aware-security-model


 

3. POLICY MODEL FOR PAAS-

ENABLED ACCESS CONTROL  

Three are the main types of security policy that the 

proposed PaaS solution aims at supporting: 
 Data encryption policies. These determine the 

strength of the cryptographic protection that 

each sensitive object enjoys for confidentiality 

reasons. They give rise to security controls 

enforceable during bootstrapping of a cloud 

application.  

 Data fragmentation and distribution policies. 

These determine the manner in which sensitive 

data objects must be fragmented and 

distributed to different physical servers for 

privacy reasons. They too give rise to security 

controls enforceable during application 

bootstrapping. 

 Access control policies. These are essentially 

ABAC policies that determine when to grant, 

or deny, access to sensitive data on the basis of 

dynamically-evolving contextual attributes 

associated with the entity requesting the 

access. Context awareness is deemed of utmost 

importance for leveraging the security of 

cloud-based applications which by definition 

operate in dynamic and heterogeneous 

environments. Access control policies give rise 

to security controls dynamically enforceable 

during application execution time. 
Due to space limitations, in this paper we only 
consider access control policies.  

3.1 Access Control Policy Model 

We argue that, in order to aid application developers 
in defining effective ABAC policies for any kind of 

sensitive data, our PaaS solution must be underpinned 
by an underlying ontological model, one which bears 
the following characteristics: 
 It is founded on a framework of relevant 

interrelated concepts which capture all those 

knowledge artefacts that are required for 

describing an ABAC policy. Such a framework is 

provided by the vocabulary outlined in Section 2 

 It uses an extensible formalism for 

accommodating the framework of interrelated 

concepts, hence expressing ABAC policies.  

Such a representation disentangles the definition 

of a policy from the code employed for enforcing 

it, offering the following seminal advantages: (i) 

It allows the framework of relevant interrelated 

concepts to be extended and instantiated, 

independently of the code employed by the 

application. Such an extension/instantiation aims 

at customising the framework to the particular 

needs of a given application. (ii) It forms an 

adequate basis for reasoning generically about 

the correctness and consistency of the ABAC 

policies, hence about the effectiveness of the 

security controls that these policies give rise to. 

3.1.1 ABAC Policy Rules 

Following an approach inspired by the XACML 

standard (OASIS, 2013), an ABAC policy comprises 

one or more rules. A rule is the most elementary 

structural element and the basic building block of 

policies. A generic template for ABAC rules is 

provided in Table 1: 

Table 1: ABAC rule template. 

[actor] with [context expression] has [authorisation] for 

[action] on [controlled object] 

The template defines a generic structure, in terms of 

relevant attributes, to which all ABAC rules in our 

PaaS framework adhere. It comprises several 

attributes which are further elaborated below. 

 actor identifies the subject who may request 

access to perform an operation on a sensitive 

object; it draws its values from the 

Figure 3: ABAC ontological model 



 

pcm:Subject class of the Security Context 

Element model defined in Section 2.  

 context expression is a Boolean expression which 

identifies the environmental conditions that must 

hold in order to permit, or deny, the performance 

of an operation on a sensitive object. Context 

expressions are further elaborated in Section 

3.1.2. 

 authorisation determines the type of 

authorisation (positive i.e. ‘permit’, or negative 

i.e. ‘deny’) that is granted.  

 action identifies the operation that may, or may 

not, be performed on the protected sensitive 

object; it draws its values from the 

ppm:Permission class of the Security 

Context Element model defined in Section 2. 

 controlled object identifies the sensitive object on 

which access is requested; it draws its values 

from the pcm:Object class of the Security 

Context Element model defined in Section 2. 

In our ontological model, an ABAC rule takes the 

form of an instance of the class pac:ABACRule (see 

Figure 3). A number of object properties are attached 

to this class which are intended to capture the 

aforementioned attributes. As depicted in Figure 3, 

these associate the pac:ABACRule class with an 

appropriate framework of relevant classes from the 

vocabulary of Section 2 which adequately capture the 

attributes of the ABAC rule template. The identifier 

pac (stands for PaaS Access Control) recognises the 

namespace underlying the classes and properties of 

the proposed ontological model. 

3.1.2 Context Expressions 

A context expression takes the form of an instance of 
the class pac:ContextExpression (see Figure 3). 
It specifies a number of constraints on the values of 
one or more instances drawn from the vocabularies 
pcpm:ContextPattern and 
pcm:SecurityContextElement defined in 
Section 2.  The class pac:ContextExpression is 
associated with these vocabularies through the object 
properties pac:hasPatternParameter and 
pac:hasParameter respectively depicted in Figure 
4. As we would expect, a context expression may 
combine two or more constraints using logical 
connectives (conjunction, disjunction, exclusive 
disjunction, negation). In order to capture such 
combinations of constraints, the 
pac:ContextExpression class encompasses a 
subclass for each logical connective (see Figure 4). A 

context expression may be defined recursively, in 
terms of one or more other context expressions. This 
is captured by associating the 
pac:ContextExpression class with itself through 
the properties pac:hasParameter and 
pac:hasPatternParameter (see Figure 4). 

3.1.3 ABAC Policies and Policy Sets 

In our ontological model, an ABAC policy takes the 

form of an instance of the class pac:ABACPolicy. It 

is associated with the rules that it comprises through 

the property pac:hasABACRule. An ABAC policy 

may comprise a multitude of ABAC rules which 

potentially evaluate to different (and conflicting) 

access control decisions. This calls for a combining 

algorithm which reconciles the different decisions 

and determines an overall decision for the entire 

policy (OASIS, 2013). An example of a combining 

algorithm is the ‘deny-overrides’ algorithm, whereby 

a policy evaluation resolves to ‘deny’ if at least one 

of its constituent rules evaluates to ‘deny’, or if none 

of them evaluates to ‘permit’. A combining algorithm 

takes the form of an instance of the class 

pac:CombiningAlgorithms depicted in Figure 3. 

A combining algorithm is attached to an ABAC 

policy through the property 

pac:hasPolicyCombiningAlgorithm.  

Following an approach inspired by the XACML 

standard (OASIS, 2013), access control policies are 

grouped into policy sets. In our ontological model, a 

policy set takes the form of an instance of the class 

pac:ABACPolicySet (see Figure 3).  A policy is 

associated with its enclosing policy set through the 

property pac:belongsToABACPolicySet. A 

policy set may exhibit a hierarchical structure and 

comprise one or more other ABAC policy sets. This 

recursive inclusion is captured by rendering the 

pac:belongsToABACPolicySet property  

applicable to ABAC policy sets too (see Figure 3). 

Figure 4: Context expression ontological model. 



 

ABAC policy sets are also associated with combining 

algorithms. As in the case of policies, these reconcile 

the potentially different access control decisions to 

which the policies comprising a policy set may 

evaluate. 

It is to be noted here that analogous policy models 

have been devised for the rest of the policy types 

outlined at the beginning of Section 3. 

3.2 Access Control Policies in Linked 

USDL  

Section 3.1 outlined a model for the generic 

representation of ABAC policies. This section 

demonstrates how this model can be incorporated into 

the ontological framework provided by Linked USDL 

(2014), and in particular, into USDL-SEC – Linked 

USDL’s security profile (USDL stands from Unified 

Service Description Language). By capitalising on 

USDL-SEC, our approach avoids the use of bespoke, 

non-standards-based, ontologies for the 

representation of ABAC policies (see Section 4 for a 

relevant outline of such ontologies). Instead, it is 

based on a diffused ontological framework which has 

recently attracted considerable research interest. In 

addition, the adoption of Linked USDL brings about 

the following advantages (Pedrinaci et al., 2014): (i) 

Linked USDL relies on existing widely-used RDF(S) 

vocabularies (such as GoodRelations, FOAF and 

SKOS), whilst it can be easily extended through 

linking to further existing, or new, RDF(S) 

ontologies. In this respect, it promotes knowledge 

sharing whilst it increases the interoperability, 

reusability and generality of our framework. (ii) By 

offering a number of different profiles, Linked USDL 

provides a holistic and generic solution able to 

adequately capture a wide range of business details. 

This is important for our work as it allows us to 

adequately capture the business aspects of the 

security policies encountered within our framework. 

(iii) Linked USDL is designed to be easily extensible 

through linking to further existing, or new, RDF(S) 

ontologies. This is particularly important for our 

model as it facilitates seamless integration with the 

Context-aware security model devised in Section 2. 

(iv) It provides ample support for modelling, 

comparing, and trading services and service bundles. 

It also provides support for specifying, tracking, and 

reasoning about the involvement of entities in service 

delivery chains. This is important for our work for it 

allows comparisons to be drawn between different 

policy models that may potentially be offered through 

our framework.  

Due to space limitations, an introduction to the 

classes and properties offered by Linked USDL is 

omitted here. The interested reader is referred to 

(Linked USDL, 2014). 

3.2.1 Incorporating ABAC Policies into 
USDL-SEC 

USDL-SEC provides a simple vocabulary for 
describing the security properties of an application. It 
introduces the classes SecurityProfile, 
SecurityGoal, SecurityMechanism, and 
SecurityTechnology, along with a number of 
relevant object properties, as depicted in Figure 5 (to 
reduce notational clutter, we avoid prefixing the 
usdl-sec namespace to USDL-SEC classes and 
properties). For a more complete discussion of the 
classes and properties offered by USDL-SEC the 
reader is referred to (Linked USDL, 2014). 

Figure 5: USDL-SEC customisation (only classes and properties used in this paper are depicted). 



 

At the highest level of abstraction, the ABAC 

policy model forms, essentially, a particular security 

profile to which a cloud application may adhere. In 

this respect it is modelled as an instance of USDL-

SEC’s SecurityProfile class, namely 

pac:PaaSAccessControlProfile. A security 

profile is associated, through the object property 

hasSecurityGoal, with one or more security goals 

from the USDL-SEC class SecurityGoal. In the 

case of ABAC policies, the security goal is 

authorisation. This is modelled in Figure 5 by 

associating the instance 

pac:PaaSAccessControlProfile with an 

instance, say pac:AccessControlGoal, of the 

Authorization class through the property 

hasSecurityGoal. The Authorization class 

forms a sub-concept of SecurityGoal.  

The authorisation goal is achieved by means of a 

suitable access control mechanism. USDL-SEC 

provides a layer of abstraction, namely the concept 

SecurityMechanism, for the specification of such 

a mechanism. In particular, it provides the class 

AccessControl, a sub-concept of 

SecurityMechanism, an instance of which, say 

pac:AccessControlMechanism, represents the  

access control mechanism offered by our PaaS 

framework. This instance is associated with the 

pac:AccessControlGoal instance through the 

property isImplementedBy.  

The access control mechanism represented by the 

instance pac:AccessControlMechanism is 

realised by means of some underlying concrete 

security technology. USDL-SEC provides a layer of 

abstraction, namely the concept 

SecurityTechnology, for the specification of such 

a technology. In our model, the access control 

mechanism is realised by the access control 

technology provided by our PaaS framework. This is 

modelled by introducing the pac:PaaSABAC 

subclass (see Figure 5), along with the instance 

pac:AccessControlTechnology which 

represents this access control technology. This 

instance is associated with the access control 

mechanism through the property 

isRealizedByTechnology (see Figure 5). The 

pac:PaaSABAC subclass is associated, through the 

property pac:hasABACPoliceSet, with the class 

pac:ABACPolicySet (the top concept of the ABAC 

policy model of Section 3). This essentially captures 

the fact that the access control mechanism is realised 

through the policies encompassed in one or more 

ABAC policy sets.  

It is to be noted here that the policy models 

devised for the rest of the policy types outlined at the 

beginning of Section 3 are incorporated into USDL-

SEC in an analogous manner.  

4. RELATED WORK 

In the literature, there is a plethora of context models. 

For example (Strang & Linnhoff-Popien, 2004) and 

(Bettini et al., 2010) review models of context that 

range from key-value models, to mark-up schemes, 

graphical models, object-oriented models, logic-

based models and ontology-based models. An 

interesting context model is the one proposed in 

(Miele et al., 2009), which was initially developed for 

mobile devices and later extended for the use in 

service-based applications in (Bucchiarone et al., 

2010). Another example is the one in (Truong et al., 

2009) who developed an ontological model of the 

W4H classification for context. The W4H ontology 

provides a set of general classes, properties, and 

relations exploiting the five semantic dimensions: 

identity (who), location (where), time (when), activity 

(what) and device profiles (how). Furthermore, 

authors exploited the concepts of the W4H ontology 

by including domain-independent common context 

concepts from existing work; e.g. FOAF, vCard, the 

OWL-Time Ontology, etc. The five dimensions of 

context have been also pointed out earlier by Abowd 

and Mynatt (Abowd and Mynatt, 2000) who stated 

that context should include the ‘five W’: Who, What, 

Where, When, and Why. For example, by ‘Who’, 

they mean that it is not enough to identify a person as 

a customer; the person’s past actions and service 

related background should also be identified for better 

service provision. ‘What’ refers to the activities 

conducted by the people involved in the context and 

interactions between them. ‘Where’ represents 

location data. ‘When’ is related to time. ‘Why’ 

specifies the reason for ‘Who’ did ‘What’. ‘Why’ 

represents a complicated notion and acts as the 

driving force for context sensitive information 

systems. In addition to that, from the literature review 

we found interesting efforts that concerned modelling 

languages, which take context explicitly into account. 

The first such effort was ContextUML a UML-based 

modelling language that was specifically designed for 

Web service development and applies model-driven 

development principles; see (Sheng, 2005). In a Web-

service-based environment, ContextUML considers 

that context contains any information that can be used 

by a Web service to adjust its execution and output.  



 

The need for the exploitation of context in the 

access control mechanisms is quite evident from the 

state-of-the-art. Nevertheless, we found that even 

dedicated context-aware extensions to traditional 

access control models (e.g. Role-based Access 

Control - RBAC) either do not cover all the 

contextual elements with a reusable security related 

context model or are proven hard to maintain in 

dynamic environments where users often change 

roles or are not known a priori (Heupel, 2012). On the 

other hand, pure ontological models (e.g. (Truong et 

al., 2009), or even Attribute-based Access Control 

(ABAC) approaches (e.g. (Jung et al., 2014)) they do 

not seem to cover all the security requirements 

associated with the lifecycle of a cloud application 

(i.e. bootstrapping and run-time). Specifically, either 

they do not cover the full range of contextual 

elements that are associated with all the security 

aspects of sensitive data managed by cloud 

applications or they are based on heavy inferencing 

that is considered as inefficient for such dynamic 

environments (Verginadis et al., 2015b).    

With respect to policies and policy-based 

applications, syntactic descriptions promote a 

declarative approach to policy expression, one which 

aims at replacing a trend whereby policies are 

encoded imperatively, as part of the same software 

that checks for their compliance. Several markup 

languages have been proposed for the declarative 

description of policies, some prominent examples 

being RuleML (2015), XACML (OASIS, 2013), 

SAML (2008) and WS-Trust (2007). These generally 

provide XML-based syntaxes for expressing policy 

rules and sets. Nevertheless, such syntactic 

descriptions fail to capture the knowledge lurking 

behind policies. In this respect, they are merely data 

models that lack any form of semantic agreement 

beyond the boundaries of the organisation that 

developed them. Any interoperability relies on the 

use of vocabularies that are shared among all parties 

involved in an interaction. 

In order to overcome the aforementioned 

limitations, semantically-rich approaches to the 

specification of policies have been brought to the 

attention of the research community. These generally 

embrace Semantic Web representations for capturing 

what we term action-oriented policies, i.e. policies 

which control when a particular actor or subject can 

perform a specified action on, or through the use of, a 

particular resource. These approaches typically 

employ ontologies in order to assign meaning to 

actors, actions and resources. Several works in the 

area of semantic policy representation have been 

reported in the literature (Uszok, 2005; Kagal et al., 

2003; Hu et al., 2014). In (Uszok, 2005), the authors 

presented KAoS – a general-purpose policy 

management framework which exhibits a three-

layered architecture comprising: 

 A human interface layer, which provides a 

graphical interface for policy specification in 

natural language.  

 A policy management layer, which uses OWL 

(2004) to encode and manage policy-related 

knowledge. 

 A policy monitoring and enforcement layer, 

which automatically grounds OWL policies to a 

programmatic format suitable for policy-based 

monitoring and policy enforcement.  

In (Kagal et al., 2003) the authors proposed Rei – 

a policy specification language expressed in OWL-

Lite (2004). It allows the declarative representation of 

a wide range of policies which control which actions 

can be performed, and which actions should be 

performed, by a specific entity. Furthermore, it 

defines a set of concepts (rights, prohibitions, 

obligations, and dispenations) for specifying and 

reasoning about access control rules. In this respect, 

it provides an abstraction which allows the 

specification of a desirable set of behaviours which 

are potentially understandable – hence enforceable – 

by a wide range of autonomous entities in open and 

dynamic environments.  

In (Hu et al., 2014), the authors recognise that 

cloud computing, and in particular the concept of 

multi-tenancy, calls for policy-driven access control 

mechanisms. They propose an ontology-based 

framework to capture the common semantics and 

structure of different types of access control policies 

(e.g. XACML policies, firewall policies, etc.), and 

facilitate the process of detecting anomalies in these 

policies. Their ontology captures the underlying 

domain concepts involved, the policy structure and 

the policy attributes. Particular types of access control 

policies are obtained by appropriately instantiating 

the ontology.  

5. CONCLUSIONS  

We have presented suitable vocabularies of concepts 

and properties, namely the Security Context Element, 

the Context Pattern and the Permission which 

adequately captures the knowledge lurking behind 

ABAC policies. We have also proposed a generic 

ontological model for the abstract representation of 

ABAC policies which disentangles the definition of a 

policy from the actual code employed for enforcing 

it, bringing about the advantages outlined in Section 



 

3.1. The model is underpinned by the Security 

Context Element vocabulary, and is incorporated into 

the ontological framework offered by USDL-SEC 

(Linked USDL’s security profile). Such a model 

forms the basis of our proposed PaaS solution – 

essentially a security-by-design framework which 

aims at aiding cloud application developers in 

defining effective access control policies for any kind 

of sensitive data.  

Any effective use of the ABAC policy model 

requires a mechanism through which it can be 

suitably customised in order to allow for the 

specification of concrete ABAC policies. Such a 

customisation amounts to an extension and/or 

instantiation of the abstract classes and properties 

presented in Sections 3 and 4. It is the responsibility 

of such a mechanism to ensure that this 

extension/instantiation takes place according to a set 

of predefined governance policies. In the future, we 

intend to investigate the construction of a higher-level 

ontological framework that will generically 

accommodate these governance policies and thus 

pave the way for the construction of a generic 

customisation mechanism that can be easily adapted 

to the particular needs of the potential adopter of our 

framework. 
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